21,99 €
inkl. MwSt.

Versandfertig in 1-2 Wochen
payback
11 °P sammeln
  • Broschiertes Buch

Si nous connaissons uniquement les valeurs sur le cercle unité du plan complexe d'une fonction harmonique ou holomorphe définie sur le disque unité, est-il possible de retrouver toutes ses valeurs? Aussi, si nous connaissons une fonction sur le disque ouvert, que pouvons-nous dire de son comportement sur le cercle si on la prolonge au disque fermé par limite radiale? Les espaces de Hardy sont des ensembles de fonctions holomorphes sur le disque unité du plan complexe possédant certaines caractéristiques. Une approche formelle, mais guidée par une volonté de vulgarisation mènera à une…mehr

Produktbeschreibung
Si nous connaissons uniquement les valeurs sur le cercle unité du plan complexe d'une fonction harmonique ou holomorphe définie sur le disque unité, est-il possible de retrouver toutes ses valeurs? Aussi, si nous connaissons une fonction sur le disque ouvert, que pouvons-nous dire de son comportement sur le cercle si on la prolonge au disque fermé par limite radiale? Les espaces de Hardy sont des ensembles de fonctions holomorphes sur le disque unité du plan complexe possédant certaines caractéristiques. Une approche formelle, mais guidée par une volonté de vulgarisation mènera à une définition des espaces de Hardy et à une caractérisation de leurs éléments et de leurs espaces duaux.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Pierre-Olivier Rathé, maître ès sciences, études en mathématiques à l''Université de Montréal. Enseignant au Cégep régional de Lanaudière à Terrebonne au Québec.