Michael Albert (University of Otago, Dundedin, New Zealand), Richard Nowakowski (Dalhousie University, Halifax, Canada), David Wolfe
Lessons in Play
An Introduction to Combinatorial Game Theory, Second Edition
Michael Albert (University of Otago, Dundedin, New Zealand), Richard Nowakowski (Dalhousie University, Halifax, Canada), David Wolfe
Lessons in Play
An Introduction to Combinatorial Game Theory, Second Edition
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A thorough revision of a popular text in combinatorial game theory, this second edition reorganizes presentation to make it more widely accessible.
Andere Kunden interessierten sich auch für
- Jo NurseLeadership Lessons from a Global Health Crisis71,99 €
- Lucien WaldFundamentals of Solar Radiation54,46 €
- Douglas Benn (Norway University Centre in Svalbard)Glaciers and Glaciation, 2nd edition98,99 €
- Yihui Xie (RStudio, Inc. Boston, MA, USA)R Markdown56,99 €
- David HarperValuation of Hotels for Investors97,99 €
- Jun Mitani (Japan University of Tsukuba)Curved-Folding Origami Design52,99 €
- Rhona FlinSafety at the Sharp End77,99 €
-
-
-
A thorough revision of a popular text in combinatorial game theory, this second edition reorganizes presentation to make it more widely accessible.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd
- 2 ed
- Seitenzahl: 346
- Erscheinungstermin: 21. Januar 2023
- Englisch
- Abmessung: 233mm x 154mm x 17mm
- Gewicht: 590g
- ISBN-13: 9781032475660
- ISBN-10: 1032475668
- Artikelnr.: 67401754
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Taylor & Francis Ltd
- 2 ed
- Seitenzahl: 346
- Erscheinungstermin: 21. Januar 2023
- Englisch
- Abmessung: 233mm x 154mm x 17mm
- Gewicht: 590g
- ISBN-13: 9781032475660
- ISBN-10: 1032475668
- Artikelnr.: 67401754
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Michael Albert - University of Otago Richard Nowakowski - Dalhousie University David Wolfe - Dalhousie University
Combinatorial Games
0.1 Basic Terminology
Problems
1 Basic Techniques
1.1 Greedy
1.2 Symmetry
1.3 Parity
1.4 Give Them Enough Rope!
1.5 Strategy Stealing
1.6 Change the Game!
1.7 Case Study: Long Chains in Dots & Boxes
Problems
2 Outcome Classes
2.1 Outcome Functions
2.2 Game Positions and Options
2.3 Impartial Games: Minding Your Ps and Ns
2.4 Case Study: Roll The Lawn
2.5 Case Study: Timber
2.6 Case Study: Partizan Endnim
Problems
3 Motivational Interlude: Sums of Games
3.1 Sums
3.2 Comparisons
3.3 Equality and Identity
3.4 Case Study: Domineering Rectangles
Problems
4 The Algebra of Games
4.1 The Fundamental Definitions
4.2 Games Form a Group with a Partial Order
4.3 Canonical Form
4.4 Case Study: Cricket Pitch
4.5 Incentives
Problems
5 Values of Games
5.1 Numbers
5.2 Case Study: Shove
5.3 Stops
5.4 A Few All-Smalls: Up, Down, and Stars
5.5 Switches
5.6 Case Study: Elephants & Rhinos
5.7 Tiny and Miny
5.8 Toppling Dominoes
5.9 Proofs of Equivalence of Games and Numbers
Problems
6 Structure
6.1 Games Born by Day 2
6.2 Extremal Games Born By Day n
6.3 More About Numbers
6.4 The Distributive Lattice of Games Born by Day n
6.5 Group Structure
Problems
7 Impartial Games
7.1 A Star-Studded Game
7.2 The Analysis of Nim
7.3 Adding Stars
7.4 A More Succinct Notation
7.5 Taking-and-Breaking Games
7.6 Subtraction Games
7.7 Keypad Games
Problems
8 Hot Games
8.1 Comparing Games and Numbers
8.2 Coping with Confusion
8.3 Cooling Things Down
8.4 Strategies for Playing Hot Games
8.5 Norton Products
Problems
9 All-Small Games
9.1 Cast of Characters
9.2 Motivation: The Scale of Ups
9.3 Equivalence Under
9.4 Atomic Weight
9.5 All-Small Shove
9.6 More Toppling Dominoes
9.7 Clobber
Problems
10 Trimming Game Trees
10.1 Introduction
10.2 Reduced Canonical Form
10.3 Hereditary-Transitive Games
10.4 Ordinal Sum
10.5 Stirling-Shave
10.6 Even More Toppling Dominoes
Problems
Further Directions
1 Transfinite Games
2 Algorithms and Complexity
3 Loopy Games
4 Kos: Repeated Local Positions
5 Top-Down Thermography
6 Enriched Environments
7 Idempotents
8 Mis`ere Play
9 Scoring Games
A Top-Down Induction
A.1 Top-Down Induction
A.2 Examples
0.1 Basic Terminology
Problems
1 Basic Techniques
1.1 Greedy
1.2 Symmetry
1.3 Parity
1.4 Give Them Enough Rope!
1.5 Strategy Stealing
1.6 Change the Game!
1.7 Case Study: Long Chains in Dots & Boxes
Problems
2 Outcome Classes
2.1 Outcome Functions
2.2 Game Positions and Options
2.3 Impartial Games: Minding Your Ps and Ns
2.4 Case Study: Roll The Lawn
2.5 Case Study: Timber
2.6 Case Study: Partizan Endnim
Problems
3 Motivational Interlude: Sums of Games
3.1 Sums
3.2 Comparisons
3.3 Equality and Identity
3.4 Case Study: Domineering Rectangles
Problems
4 The Algebra of Games
4.1 The Fundamental Definitions
4.2 Games Form a Group with a Partial Order
4.3 Canonical Form
4.4 Case Study: Cricket Pitch
4.5 Incentives
Problems
5 Values of Games
5.1 Numbers
5.2 Case Study: Shove
5.3 Stops
5.4 A Few All-Smalls: Up, Down, and Stars
5.5 Switches
5.6 Case Study: Elephants & Rhinos
5.7 Tiny and Miny
5.8 Toppling Dominoes
5.9 Proofs of Equivalence of Games and Numbers
Problems
6 Structure
6.1 Games Born by Day 2
6.2 Extremal Games Born By Day n
6.3 More About Numbers
6.4 The Distributive Lattice of Games Born by Day n
6.5 Group Structure
Problems
7 Impartial Games
7.1 A Star-Studded Game
7.2 The Analysis of Nim
7.3 Adding Stars
7.4 A More Succinct Notation
7.5 Taking-and-Breaking Games
7.6 Subtraction Games
7.7 Keypad Games
Problems
8 Hot Games
8.1 Comparing Games and Numbers
8.2 Coping with Confusion
8.3 Cooling Things Down
8.4 Strategies for Playing Hot Games
8.5 Norton Products
Problems
9 All-Small Games
9.1 Cast of Characters
9.2 Motivation: The Scale of Ups
9.3 Equivalence Under
9.4 Atomic Weight
9.5 All-Small Shove
9.6 More Toppling Dominoes
9.7 Clobber
Problems
10 Trimming Game Trees
10.1 Introduction
10.2 Reduced Canonical Form
10.3 Hereditary-Transitive Games
10.4 Ordinal Sum
10.5 Stirling-Shave
10.6 Even More Toppling Dominoes
Problems
Further Directions
1 Transfinite Games
2 Algorithms and Complexity
3 Loopy Games
4 Kos: Repeated Local Positions
5 Top-Down Thermography
6 Enriched Environments
7 Idempotents
8 Mis`ere Play
9 Scoring Games
A Top-Down Induction
A.1 Top-Down Induction
A.2 Examples
Combinatorial Games
0.1 Basic Terminology
Problems
1 Basic Techniques
1.1 Greedy
1.2 Symmetry
1.3 Parity
1.4 Give Them Enough Rope!
1.5 Strategy Stealing
1.6 Change the Game!
1.7 Case Study: Long Chains in Dots & Boxes
Problems
2 Outcome Classes
2.1 Outcome Functions
2.2 Game Positions and Options
2.3 Impartial Games: Minding Your Ps and Ns
2.4 Case Study: Roll The Lawn
2.5 Case Study: Timber
2.6 Case Study: Partizan Endnim
Problems
3 Motivational Interlude: Sums of Games
3.1 Sums
3.2 Comparisons
3.3 Equality and Identity
3.4 Case Study: Domineering Rectangles
Problems
4 The Algebra of Games
4.1 The Fundamental Definitions
4.2 Games Form a Group with a Partial Order
4.3 Canonical Form
4.4 Case Study: Cricket Pitch
4.5 Incentives
Problems
5 Values of Games
5.1 Numbers
5.2 Case Study: Shove
5.3 Stops
5.4 A Few All-Smalls: Up, Down, and Stars
5.5 Switches
5.6 Case Study: Elephants & Rhinos
5.7 Tiny and Miny
5.8 Toppling Dominoes
5.9 Proofs of Equivalence of Games and Numbers
Problems
6 Structure
6.1 Games Born by Day 2
6.2 Extremal Games Born By Day n
6.3 More About Numbers
6.4 The Distributive Lattice of Games Born by Day n
6.5 Group Structure
Problems
7 Impartial Games
7.1 A Star-Studded Game
7.2 The Analysis of Nim
7.3 Adding Stars
7.4 A More Succinct Notation
7.5 Taking-and-Breaking Games
7.6 Subtraction Games
7.7 Keypad Games
Problems
8 Hot Games
8.1 Comparing Games and Numbers
8.2 Coping with Confusion
8.3 Cooling Things Down
8.4 Strategies for Playing Hot Games
8.5 Norton Products
Problems
9 All-Small Games
9.1 Cast of Characters
9.2 Motivation: The Scale of Ups
9.3 Equivalence Under
9.4 Atomic Weight
9.5 All-Small Shove
9.6 More Toppling Dominoes
9.7 Clobber
Problems
10 Trimming Game Trees
10.1 Introduction
10.2 Reduced Canonical Form
10.3 Hereditary-Transitive Games
10.4 Ordinal Sum
10.5 Stirling-Shave
10.6 Even More Toppling Dominoes
Problems
Further Directions
1 Transfinite Games
2 Algorithms and Complexity
3 Loopy Games
4 Kos: Repeated Local Positions
5 Top-Down Thermography
6 Enriched Environments
7 Idempotents
8 Mis`ere Play
9 Scoring Games
A Top-Down Induction
A.1 Top-Down Induction
A.2 Examples
0.1 Basic Terminology
Problems
1 Basic Techniques
1.1 Greedy
1.2 Symmetry
1.3 Parity
1.4 Give Them Enough Rope!
1.5 Strategy Stealing
1.6 Change the Game!
1.7 Case Study: Long Chains in Dots & Boxes
Problems
2 Outcome Classes
2.1 Outcome Functions
2.2 Game Positions and Options
2.3 Impartial Games: Minding Your Ps and Ns
2.4 Case Study: Roll The Lawn
2.5 Case Study: Timber
2.6 Case Study: Partizan Endnim
Problems
3 Motivational Interlude: Sums of Games
3.1 Sums
3.2 Comparisons
3.3 Equality and Identity
3.4 Case Study: Domineering Rectangles
Problems
4 The Algebra of Games
4.1 The Fundamental Definitions
4.2 Games Form a Group with a Partial Order
4.3 Canonical Form
4.4 Case Study: Cricket Pitch
4.5 Incentives
Problems
5 Values of Games
5.1 Numbers
5.2 Case Study: Shove
5.3 Stops
5.4 A Few All-Smalls: Up, Down, and Stars
5.5 Switches
5.6 Case Study: Elephants & Rhinos
5.7 Tiny and Miny
5.8 Toppling Dominoes
5.9 Proofs of Equivalence of Games and Numbers
Problems
6 Structure
6.1 Games Born by Day 2
6.2 Extremal Games Born By Day n
6.3 More About Numbers
6.4 The Distributive Lattice of Games Born by Day n
6.5 Group Structure
Problems
7 Impartial Games
7.1 A Star-Studded Game
7.2 The Analysis of Nim
7.3 Adding Stars
7.4 A More Succinct Notation
7.5 Taking-and-Breaking Games
7.6 Subtraction Games
7.7 Keypad Games
Problems
8 Hot Games
8.1 Comparing Games and Numbers
8.2 Coping with Confusion
8.3 Cooling Things Down
8.4 Strategies for Playing Hot Games
8.5 Norton Products
Problems
9 All-Small Games
9.1 Cast of Characters
9.2 Motivation: The Scale of Ups
9.3 Equivalence Under
9.4 Atomic Weight
9.5 All-Small Shove
9.6 More Toppling Dominoes
9.7 Clobber
Problems
10 Trimming Game Trees
10.1 Introduction
10.2 Reduced Canonical Form
10.3 Hereditary-Transitive Games
10.4 Ordinal Sum
10.5 Stirling-Shave
10.6 Even More Toppling Dominoes
Problems
Further Directions
1 Transfinite Games
2 Algorithms and Complexity
3 Loopy Games
4 Kos: Repeated Local Positions
5 Top-Down Thermography
6 Enriched Environments
7 Idempotents
8 Mis`ere Play
9 Scoring Games
A Top-Down Induction
A.1 Top-Down Induction
A.2 Examples