This book reproduces J-P. Serre's 1964 Harvard lectures. The aim is to introduce the reader to the "Lie dictionary": Lie algebras and Lie groups. Special features of the presentation are its emphasis on formal groups (in the Lie group part) and the use of analytic manifolds on p-adic fields. Some knowledge of algebra and calculus is required of the reader, but the text is easily accessible to graduate students, and to mathematicians at large.
The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I. I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups. of time prevented me from including the more precise theory of Lack semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a last Chapter, the typical case ofal,.. This part has been written with the help of F.Raggi and J.Tate. I want to thank them, and also Sue Golan, who did the typing for both parts. Jean-Pierre Serre Harvard, Fall 1964 Chapter I. Lie Algebras: Definition and Examples Let Ie be a commutativering with unit element, and let A be a k-module, then A is said to be a Ie-algebra if there is given a k-bilinear map A x A~ A (i.e., a k-homomorphism A0" A -+ A). As usual we may define left, right and two-sided ideals and therefore quo tients. Definition 1. A Lie algebra over Ie isan algebrawith the following properties: 1). The map A0i A -+ A admits a factorization A ®i A -+ A2A -+ A i.e., ifwe denote the imageof(x,y) under this map by [x,y) then the condition becomes for all x e k. [x,x)=0 2). (lx,II], z]+ny, z), x) + ([z,xl, til = 0 (Jacobi's identity) The condition 1) implies [x,1/]=-[1/,x).
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I. I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups. of time prevented me from including the more precise theory of Lack semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a last Chapter, the typical case ofal,.. This part has been written with the help of F.Raggi and J.Tate. I want to thank them, and also Sue Golan, who did the typing for both parts. Jean-Pierre Serre Harvard, Fall 1964 Chapter I. Lie Algebras: Definition and Examples Let Ie be a commutativering with unit element, and let A be a k-module, then A is said to be a Ie-algebra if there is given a k-bilinear map A x A~ A (i.e., a k-homomorphism A0" A -+ A). As usual we may define left, right and two-sided ideals and therefore quo tients. Definition 1. A Lie algebra over Ie isan algebrawith the following properties: 1). The map A0i A -+ A admits a factorization A ®i A -+ A2A -+ A i.e., ifwe denote the imageof(x,y) under this map by [x,y) then the condition becomes for all x e k. [x,x)=0 2). (lx,II], z]+ny, z), x) + ([z,xl, til = 0 (Jacobi's identity) The condition 1) implies [x,1/]=-[1/,x).
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.