Lie algebras have many varied applications, both in mathematics and mathematical physics. This book provides a thorough but relaxed mathematical treatment of the subject, including both the Cartan-Killing-Weyl theory of finite dimensional simple algebras and the more modern theory of Kac-Moody algebras. Proofs are given in detail and the only prerequisite is a sound knowledge of linear algebra. The Appendix provides a summary of the basic properties of each Lie algebra of finite and affine type.
Lie algebras have many varied applications, both in mathematics and mathematical physics. This book provides a thorough but relaxed mathematical treatment of the subject, including both the Cartan-Killing-Weyl theory of finite dimensional simple algebras and the more modern theory of Kac-Moody algebras. Proofs are given in detail and the only prerequisite is a sound knowledge of linear algebra. The Appendix provides a summary of the basic properties of each Lie algebra of finite and affine type.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Roger Carter is an Emeritus Professor of Mathematics at the University of Warwick.
Inhaltsangabe
1. Basic concepts 2. Representations of soluble and nilpotent Lie algebras 3. Cartan subalgebras 4. The Cartan decomposition 5. The root systems and the Weyl group 6. The Cartan matrix and the Dynkin diagram 7. The existence and uniqueness theorems 8. The simple Lie algebras 9. Some universal constructions 10. Irreducible modules for semisimple Lie algebras 11. Further properties of the universal enveloping algebra 12. Character and dimension formulae 13. Fundamental modules for simple Lie algebras 14. Generalized Cartan matrices and Kac-Moody algebras 15. The classification of generalised Cartan matrices 16 The invariant form, root system and Weyl group 17. Kac-Moody algebras of affine type 18. Realisations of affine Kac-Moody algebras 19. Some representations of symmetrisable Kac-Moody algebras 20. Representations of affine Kac-Moody algebras 21. Borcherds Lie algebras Appendix.
1. Basic concepts 2. Representations of soluble and nilpotent Lie algebras 3. Cartan subalgebras 4. The Cartan decomposition 5. The root systems and the Weyl group 6. The Cartan matrix and the Dynkin diagram 7. The existence and uniqueness theorems 8. The simple Lie algebras 9. Some universal constructions 10. Irreducible modules for semisimple Lie algebras 11. Further properties of the universal enveloping algebra 12. Character and dimension formulae 13. Fundamental modules for simple Lie algebras 14. Generalized Cartan matrices and Kac-Moody algebras 15. The classification of generalised Cartan matrices 16 The invariant form, root system and Weyl group 17. Kac-Moody algebras of affine type 18. Realisations of affine Kac-Moody algebras 19. Some representations of symmetrisable Kac-Moody algebras 20. Representations of affine Kac-Moody algebras 21. Borcherds Lie algebras Appendix.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826