Marginale Regressionsmodelle sind geeignet, den Einfluß von Kovariablen auf multivariate, korrelierte Responsevariablen zu modellieren. Dieser Modelltyp ist besonders nützlich für die Analyse von Panel- und Clusterdaten. Die Arbeit beschäftigt sich speziell mit vollen Likelihoodansätzen bei kategorialen Responsevariablen. Die Kovariablen dürfen dabei auch stetig sein. Schwerpunkte sind die Behandlung der verschiedenen Parametrisierungsmöglichkeiten und die Gewinnung von Maximum-Likelihood-Schätzungen. Die Methoden werden anschließend zur Analyse eines großen Datensatzes aus der Praxis verwendet und gegenübergestellt. Zusätzlich wird ein für Querschnittsdaten bekanntes statistisches Verfahren zur Modelldiagnose auf den Fall korrelierter Responsevariablen adaptiert und umgesetzt.