- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is written to give instructors a tool to teach students to develop a mathematical concept from first principles. The text is organized around and offers the standard topics expected in a first undergraduate course in linear algebra.
Andere Kunden interessierten sich auch für
- Eberhard MalkowskyAdvanced Functional Analysis69,99 €
- Stephen BlahaThe Metatheory of Physics Theories, and the Theory of Everything as a Quantum Computer Language53,99 €
- Stephen BlahaUnification of the Eleven Boson Interactions Based on 'rotations of Interactions': New Su(3)Xu(64) Symmetry and 'interactions of Interactions, ' Elect32,99 €
- Patrick ZulkowskiLinear Algebra95,99 €
- Aneshkumar MaharajStudents' Understanding of Mathematical Concepts: Calculus and Linear Algebra52,99 €
- R. FratilaAn Introduction to the Theory of Linear Systems21,99 €
- J. C. MeyerThe Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations42,99 €
-
-
-
This book is written to give instructors a tool to teach students to develop a mathematical concept from first principles. The text is organized around and offers the standard topics expected in a first undergraduate course in linear algebra.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: CRC Press
- Seitenzahl: 376
- Erscheinungstermin: 26. August 2024
- Englisch
- Abmessung: 234mm x 156mm x 20mm
- Gewicht: 570g
- ISBN-13: 9780367754877
- ISBN-10: 0367754878
- Artikelnr.: 71231510
- Verlag: CRC Press
- Seitenzahl: 376
- Erscheinungstermin: 26. August 2024
- Englisch
- Abmessung: 234mm x 156mm x 20mm
- Gewicht: 570g
- ISBN-13: 9780367754877
- ISBN-10: 0367754878
- Artikelnr.: 71231510
Jeff Suzuki is Associate Professor of Mathematics at Brooklyn College and holds a Ph.D. from Boston University. His research interests include mathematics education, history of mathematics, and the application of mathematics to society and technology. He is a two-time winner of the prestigious Carl B. Allendoerfer Award for expository writing. His publications have appeared in The College Mathematics Journals; Mathematics Magazine; Mathematics Teacher; and the American Mathematical Society's blog on teaching and learning mathematics. His YouTube channel (http://youtube.com/jeffsuzuki1) includes videos on mathematical subjects ranging from elementary arithmetic to linear algebra, cryptography, and differential equations.
Introduction and Features. For the Student . . . and Teacher.
Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples.
1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6.
Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear
Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient
Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations.
2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric
Transformations. 3.2. Vector Transformations. 3.3. The Transformation
Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6.
Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography.
4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3.
Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations.
4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector
Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence
and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed
Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least
Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3.
Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The
Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More
Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10.
Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and
Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3.
Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors
for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic
Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues.
7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1.
LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4.
Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials.
9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates.
Bibliography. Index.
Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples.
1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6.
Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear
Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient
Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations.
2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric
Transformations. 3.2. Vector Transformations. 3.3. The Transformation
Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6.
Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography.
4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3.
Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations.
4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector
Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence
and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed
Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least
Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3.
Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The
Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More
Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10.
Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and
Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3.
Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors
for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic
Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues.
7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1.
LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4.
Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials.
9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates.
Bibliography. Index.
Introduction and Features. For the Student . . . and Teacher.
Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples.
1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6.
Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear
Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient
Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations.
2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric
Transformations. 3.2. Vector Transformations. 3.3. The Transformation
Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6.
Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography.
4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3.
Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations.
4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector
Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence
and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed
Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least
Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3.
Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The
Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More
Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10.
Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and
Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3.
Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors
for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic
Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues.
7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1.
LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4.
Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials.
9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates.
Bibliography. Index.
Prerequisites. Suggested Sequences. 1. Tuples and Vectors. 1.1. Tuples.
1.2. Vectors. 1.3. Proofs. 1.4. Directed Distances. 1.5. Magnitude. 1.6.
Direction. 1.7. Unit and Orthogonal Vectors. 2. Systems of Linear
Equations. 2.1. Standard Form. 2.2. Solving Systems. 2.3. Coefficient
Matrices. 2.4. Free and Basic Variables. 2.5. Computational Considerations.
2.6. Applications of Linear Algebra. 3. Transformations. 3.1. Geometric
Transformations. 3.2. Vector Transformations. 3.3. The Transformation
Matrix. 3.4. Domain, Codomain, and Range. 3.5. Discrete Time Models. 3.6.
Linear Transformations. 3.7. Transformation Arithmetic. 3.8. Cryptography.
4. Matrix Algebra. 4.1. Scalar Multiplication. 4.2. Matrix Addition. 4.3.
Matrix Multiplication. 4.4. Elementary Matrices. 4.5. More Transformations.
4.6. Matrix Inverses. 4.7. Complex Matrices. 5. Vector Spaces. 5.1. Vector
Spaces. 5.2. Kernels and Null Spaces. 5.3. Span. 5.4. Linear Independence
and Dependence. 5.5. Change of Basis. 5.6. Orthogonal Bases. 5.7. Normed
Vector Spaces. 5.8. Inner Product Spaces. 5.9. Applications. 5.10. Least
Squares. 6. Determinants. 6.1. Linear Equations. 6.2. Transformations. 6.3.
Inverse. 6.4. The Determinant. 6.5. A Formula for the Determinant. 6.6. The
Determinant Formula. 6.7. More Properties of the Determinant. 6.8. More
Computations of the Determinant. 6.9. Use(lesses) of the Determinant. 6.10.
Uses of the Determinant. 6.11. Permutations. 7. Eigenvalues and
Eigenvectors. 7.1. More Transformations. 7.2. The Eigenproblem. 7.3.
Finding Eigenvalues: Numerical Methods. 7.4. Eigenvalues and Eigenvectors
for a 2 x 2 Matrix. 7.5. The Characteristic Equation. 7.6. Stochastic
Matrices. 7.7. A Determinant-Free Approach. 7.8. Generalized Eigenvalues.
7.9. Symmetric Matrices. 7.10. Graphs. 8. Decomposition. 8.1.
LU-Decomposition. 8.2. QR-Decomposition. 8.3. Eigendecompositions. 8.4.
Singular Value Decomposition. 9. Extras. 9.1. Properties of Polynomials.
9.2. Complex Numbers. 9.3. Mod-N Arithmetic. 9.4. Polar Coordinates.
Bibliography. Index.