48,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
24 °P sammeln
  • Broschiertes Buch

This textbook is an approachable introduction to statistical analysis using matrix algebra. Prior knowledge of matrix algebra is not necessary. Advanced topics are easy to follow through analyses that were performed on an open-source spreadsheet using a few built-in functions. These topics include ordinary linear regression, as well as maximum likelihood estimation, matrix decompositions, nonparametric smoothers and penalized cubic splines. Each data set (1) contains a limited number of observations to encourage readers to do the calculations themselves, and (2) tells a coherent story based on…mehr

Produktbeschreibung
This textbook is an approachable introduction to statistical analysis using matrix algebra. Prior knowledge of matrix algebra is not necessary. Advanced topics are easy to follow through analyses that were performed on an open-source spreadsheet using a few built-in functions. These topics include ordinary linear regression, as well as maximum likelihood estimation, matrix decompositions, nonparametric smoothers and penalized cubic splines. Each data set (1) contains a limited number of observations to encourage readers to do the calculations themselves, and (2) tells a coherent story based on statistical significance and confidence intervals. In this way, students will learn how the numbers were generated and how they can be used to make cogent arguments about everyday matters. This textbook is designed for use in upper level undergraduate courses or first year graduate courses.

The first chapter introduces students to linear equations, then covers matrix algebra, focusing on three essential operations: sum of squares, the determinant, and the inverse. These operations are explained in everyday language, and their calculations are demonstrated using concrete examples. The remaining chapters build on these operations, progressing from simple linear regression to mediational models with bootstrapped standard errors.

Autorenporträt
Jonathon D. Brown is a social psychologist at the University of Washington. Since receiving his Ph.D. from UCLA in 1986, he has written three books, authored numerous journal articles and chapters, received a Presidential Young Investigator Award from the National Science Foundation, and been recognized as one of social psychology's most frequently-cited authors.
Rezensionen
"This book appears to be a very solid work that contains a lot of useful material in one place in a manner. It is written in a manner inviting to intermediate readers who want to deepen their understanding of a key statistical technique. ... I recommend it to the intermediate student or colleague who feel a need to boost up their understanding of the linear model." (Jay Verkuilen, Psychometrika, Vol. 83, 2018)