41,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
21 °P sammeln
  • Broschiertes Buch

Ordinary regression analysis is not appropriate for investigating dichotomous or otherwise `limited' dependent variables, but this volume examines three techniques -- linear probability, probit, and logit models -- which are well-suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models. Using detailed examples, Aldrich and Nelson point out the differences among linear, logit, and probit models, and explain the assumptions associated with each.

Produktbeschreibung
Ordinary regression analysis is not appropriate for investigating dichotomous or otherwise `limited' dependent variables, but this volume examines three techniques -- linear probability, probit, and logit models -- which are well-suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models. Using detailed examples, Aldrich and Nelson point out the differences among linear, logit, and probit models, and explain the assumptions associated with each.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
John H. Aldrich is Pfizer-Pratt University Professor of Political Science at Duke University. He is author of Why Parties: A Second Look (2011), coeditor of Positive Changes in Political Science (2007), and author of Why Parties (1995) and Before the Convention (1980). He is a past president of both the Southern Political Science Association and the Midwest Political Science Association and is serving as president of the American Political Science Association. In 2001 he was elected a fellow in the American Academy of Arts and Sciences.