Dieses Buch wendet sich besonders an Studierende der Ingenieur-, Natur- und Wirtschaftswissenschaften an Universitäten und Fachhochschulen. Behandelt werden Grundlagen und Anwendungen der linearen Algebra, wie sie in den Kursen des Grundstudiums zur Höheren Mathematik vorkommen. Für viele der verwendeten Beispiele wird die Lösung mit den Programmsystemen MAPLE oder MATLAB vorgeführt. Der Band erleichtert den Übergang von der Schule zur Hochschule.
Dieses Buch wendet sich besonders an Studierende der Ingenieur-, Natur- und Wirtschaftswissenschaften an Universitäten und Fachhochschulen. Behandelt werden Grundlagen und Anwendungen der linearen Algebra, wie sie in den Kursen des Grundstudiums zur Höheren Mathematik vorkommen. Für viele der verwendeten Beispiele wird die Lösung mit den Programmsystemen MAPLE oder MATLAB vorgeführt. Der Band erleichtert den Übergang von der Schule zur Hochschule.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr. Andreas Fischer, Universität Dortmund Prof. Dr. Winfried Schirotzek, TU Dresden Dr. Klaus Vetters, TU Dresden
Inhaltsangabe
1 Motivation.- 1.1 Proportionalität.- 1.2 Die Ableitung.- 1.3 Linearisierung.- 1.4 Produktionsmodelle.- 1.5 Zusammenfassung.- 2 Vektoren, Matrizen und lineare Gleichungssysteme.- 2.1 Vektor und Matrix.- 2.2 Rechenregeln für Matrizen und Vektoren.- 2.3 Besondere Typen von Vektoren und Matrizen.- 2.4 Lösung linearer Gleichungssysteme.- 3 Vektorräume und affine Räume.- 3.1 Der Begriff des Vektorraumes.- 3.2 Untervektorraum, Summe, Quotientenraum.- 3.3 Lineare Unabhängigkeit, Basis, Dimension.- 3.4 Affine Räume.- 4 Lineare Abbildungen und Matrizen.- 4.1 Grundlegende Begriffe und Eigenschaften.- 4.2 Dualer Raum, duale Abbildung.- 4.3 Matrixdarstellung linearer Abbildungen.- 4.4 Der Rang einer Matrix.- 4.5 Invertierbare Matrizen.- 4.6 Lineare Gleichungssysteme.- 4.7 Koordinatentransformation.- 5 Die Determinante.- 5.1 Der Flächeninhalt eines Parallelogramms.- 5.2 Definition der Determinante.- 5.3 Regeln für den Umgang mit der Determinante.- 5.4 Der Laplacesche Entwicklungssatz.- 5.5 Die Determinante eines Endomorphismus.- 6 Euklidische und unitäre Vektorräume.- 6.1 Länge und Winkel im ?2.- 6.2 Das Standardskalarprodukt im ?n.- 6.3 Euklidische Vektorräume.- 6.4 Unitäre Vektorräume.- 6.5 Orthogonalität.- 6.6 Orthogonale und unitäre Endomorphismen.- 6.7 Ein Trennungssatz und das Farkas-Lemma.- 7 Eigenwerte und Eigenvektoren.- 7.1 Aufgabenstellung und Begriffe.- 7.2 Eigenschaften und Berechnung von Eigenwerten und Eigenvektoren.- 7.3 Ähnlichkeitstransformation.- 7.4 Hauptachsentransformation quadratischer Formen.- 7.5 Extremaleigenschaft der Eigenwerte.- 8 Geometrie in euklidischen Vektorräumen.- 8.1 Darstellung affiner Unterräume.- 8.2 Abstand und Lage affiner Unterräume.- 8.3 Volumen von Parallelotopen.- 8.4 Das Vektorprodukt.- 8.5 Spiegelungen undDrehungen.- Bezeichnungen.
1 Motivation.- 1.1 Proportionalität.- 1.2 Die Ableitung.- 1.3 Linearisierung.- 1.4 Produktionsmodelle.- 1.5 Zusammenfassung.- 2 Vektoren, Matrizen und lineare Gleichungssysteme.- 2.1 Vektor und Matrix.- 2.2 Rechenregeln für Matrizen und Vektoren.- 2.3 Besondere Typen von Vektoren und Matrizen.- 2.4 Lösung linearer Gleichungssysteme.- 3 Vektorräume und affine Räume.- 3.1 Der Begriff des Vektorraumes.- 3.2 Untervektorraum, Summe, Quotientenraum.- 3.3 Lineare Unabhängigkeit, Basis, Dimension.- 3.4 Affine Räume.- 4 Lineare Abbildungen und Matrizen.- 4.1 Grundlegende Begriffe und Eigenschaften.- 4.2 Dualer Raum, duale Abbildung.- 4.3 Matrixdarstellung linearer Abbildungen.- 4.4 Der Rang einer Matrix.- 4.5 Invertierbare Matrizen.- 4.6 Lineare Gleichungssysteme.- 4.7 Koordinatentransformation.- 5 Die Determinante.- 5.1 Der Flächeninhalt eines Parallelogramms.- 5.2 Definition der Determinante.- 5.3 Regeln für den Umgang mit der Determinante.- 5.4 Der Laplacesche Entwicklungssatz.- 5.5 Die Determinante eines Endomorphismus.- 6 Euklidische und unitäre Vektorräume.- 6.1 Länge und Winkel im ?2.- 6.2 Das Standardskalarprodukt im ?n.- 6.3 Euklidische Vektorräume.- 6.4 Unitäre Vektorräume.- 6.5 Orthogonalität.- 6.6 Orthogonale und unitäre Endomorphismen.- 6.7 Ein Trennungssatz und das Farkas-Lemma.- 7 Eigenwerte und Eigenvektoren.- 7.1 Aufgabenstellung und Begriffe.- 7.2 Eigenschaften und Berechnung von Eigenwerten und Eigenvektoren.- 7.3 Ähnlichkeitstransformation.- 7.4 Hauptachsentransformation quadratischer Formen.- 7.5 Extremaleigenschaft der Eigenwerte.- 8 Geometrie in euklidischen Vektorräumen.- 8.1 Darstellung affiner Unterräume.- 8.2 Abstand und Lage affiner Unterräume.- 8.3 Volumen von Parallelotopen.- 8.4 Das Vektorprodukt.- 8.5 Spiegelungen undDrehungen.- Bezeichnungen.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826