- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Dieses Buch gibt einen vollständigen Überblick über Lineare Modelle und verwandte Gebiete, z.B. die Matrixtheorie. Das Buch umfasst Theorie und Anwendungen. Zahlreiche Beispiele sowie Datensätze, Tests und Grafiken (Tests auf Strukturbrüche/Parameterkonstanz) auf einer Website dienen der Anwendungsorientierung. Ein eigenes, relativ umfangreiches Kapitel zur Matrixtheorie stellt die notwendigen methodischen Hilfsmittel für die Beweise der Sätze im Text bereit und vermittelt eine Auswahl klassischer und moderner algebraischer Resultate. Das Buch ist vor allem als begleitendes Lehrmaterial für…mehr
Andere Kunden interessierten sich auch für
- Felix BauerDatenanalyse mit SPSS54,99 €
- T. DeutlerSchätz- und Testverfahren bei Normalverteilung mit bekanntem Variationskoeffizienten54,99 €
- K. HildenbrandLineare ökonomische Modelle54,99 €
- Fritz UngerStatistik Intensivtraining29,99 €
- A.P. LüthiMessung wirtschaftlicher Ungleichheit54,99 €
- Walter ZucchiniStatistik für Bachelor- und Masterstudenten37,99 €
- Peter P. EcksteinSPSS-Arbeitsbuch44,99 €
-
-
-
Dieses Buch gibt einen vollständigen Überblick über Lineare Modelle und verwandte Gebiete, z.B. die Matrixtheorie. Das Buch umfasst Theorie und Anwendungen. Zahlreiche Beispiele sowie Datensätze, Tests und Grafiken (Tests auf Strukturbrüche/Parameterkonstanz) auf einer Website dienen der Anwendungsorientierung. Ein eigenes, relativ umfangreiches Kapitel zur Matrixtheorie stellt die notwendigen methodischen Hilfsmittel für die Beweise der Sätze im Text bereit und vermittelt eine Auswahl klassischer und moderner algebraischer Resultate. Das Buch ist vor allem als begleitendes Lehrmaterial für Studenten, für die Forschung auf dem Gebiet der Linearen Modelle sowie für Dozenten und Studenten höherer Semester der Wirtschaftswissenschaften angelegt.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Physica / Physica-Verlag / Physica-Verlag HD
- Artikelnr. des Verlages: 978-3-7908-1519-1
- 2. Aufl.
- Seitenzahl: 584
- Erscheinungstermin: 18. September 2002
- Deutsch
- Abmessung: 235mm x 155mm x 32mm
- Gewicht: 860g
- ISBN-13: 9783790815191
- ISBN-10: 3790815195
- Artikelnr.: 04730858
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: Physica / Physica-Verlag / Physica-Verlag HD
- Artikelnr. des Verlages: 978-3-7908-1519-1
- 2. Aufl.
- Seitenzahl: 584
- Erscheinungstermin: 18. September 2002
- Deutsch
- Abmessung: 235mm x 155mm x 32mm
- Gewicht: 860g
- ISBN-13: 9783790815191
- ISBN-10: 3790815195
- Artikelnr.: 04730858
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Helge Toutenburg studierte (1961-1966) und promovierte (1969) in Berlin, habilitierte in Dortmund (1989). Er ist seit 1991 Professor für Statistik an der Ludwig-Maximilians-Universität München.
1. Einleitung.- 2. Beziehungen zwischen zwei Variablen.- 2.1 Einleitung-Beispiele.- 2.2 Darstellung der Verteilung zweidimensionaler Merkmale.- 2.3 Maßzahlen für den Zusammenhang zweier nominaler Merkmale.- 2.4 Rangkorrelationskoeffizient von Spearman.- 2.5 Zusammenhang zwischen zwei stetigen Merkmalen.- 3. Deskriptive univariate lineare Regression.- 3.1 Einleitung.- 3.2 Plots und Hypothesen.- 3.3 Prinzip der kleinsten Quadrate.- 3.4 Güte der Anpassung.- 3.5 Residualanalyse.- 3.6 Lineare Transformation der Originaldaten.- 3.7 Multiple lineare Regression und nichtlineare Regression.- 3.8 Polynomiale Regression.- 3.9 Lineare Regression mit kategorialen Regressoren.- 3.10 Spezielle nichtlineare Modelle.- 3.11 Zeitreihen.- 4. Das klassische multiple lineare Regressionsmodell.- 4.1 Deskriptive multiple lineare Regression.- 4.2 Prinzip der kleinsten Quadrate.- 4.3 Geometrische Eigenschaften der Kleinste-Quadrat-Schätzung.- 4.4 Beste lineare erwartungstreue Schätzung.- 4.5 Multikollinearität.- 4.6 Ökonometrische Gleichungen vom Regressionstyp.- 4.7 Klassische Normalregression.- 4.8 Prüfen von linearen Hypothesen.- 4.9 Varianzanalyse und Güte der Anpassung.- 4.10 Tests auf Parameterkonstanz.- 4.11 Die kanonische Form.- 4.12 Methoden zur Überwindung von Multikollinearität.- 4.13 Minimax-Schätzung.- 5. Modelle der Varianzanalyse.- 5.1 Varianzanalyse als spezielles lineares Modell.- 5.2 Einfaktorielle Varianzanalyse.- 5.3 Vergleich von einzelnen Mittelwerten.- 5.4 Multiple Vergleiche.- 5.5 Rangvarianzanalyse im vollständig randomisiertenVersuchsplan.- 5.6 Zwei- und Mehrfaktorielle Varianzanalyse.- 5.7 Zweifaktorielle Experimente mit Wechselwirkung (Modell mitfesten Effekten).- 5.8 Zweifaktorielles Experiment in Effektkodierung.- 5.9 2k-faktoriellesExperiment.- 6. Exakte und stochastische lineare Restriktionen.- 6.1 Verwendung von Zusatzinformation.- 6.2 Die restriktive KQ-Schätzung.- 6.3 Schrittweise Einbeziehung von exakten linearen Restriktionen.- 6.4 Verzerrte lineare Restriktionen und MSE-Vergleich mit derKQS.- 6.5 MSE-Matrix-Vergleiche zwischen zwei verzerrten Schätzern.- 6.6 MSE-Matrix-Vergleich zwischen zwei linearen verzerrtenSchätzern.- 6.7 MSE-Vergleich zweier (verzerrter) restriktiver Schätzer.- 6.8 Stochastische lineare Restriktionen.- 6.9 Abgeschwächte lineare Restriktionen.- 7. Das verallgemeinerte lineare Regressionsmodell.- 7.1 Einleitung.- 7.2 Optimale lineare Schätzungen von,Q.- 7.3 Aitken-Schätzung.- 7.4 Fehlspezifikation der Kovarianzmatrix.- 7.5 Heteroskedastie und Autoregression.- 8. Vorhersage von y im verallgemeinerten Regressionsmodell.- 8.1 Das Vorhersagemodell.- 8.2 Optimale inhomogene Vorhersage.- 8.3 Optimale homogene Vorhersagen.- 8.4 MSE-Matrix-Vergleiche zwischen optimalen und klassischenVorhersagen.- 8.5 Vorhersagebereiche.- 9. Sensitivitätsanalyse.- 9.1 Die Prediction-Matrix.- 9.2 Einfluss einer Beobachtung auf die Parameterschätzung.- 9.3 Grafische Methoden zum Prüfen von Modellannahmen.- 9.4 Maße auf der Basis des Konfidenzellipsoids.- 10. Modelle für kategoriale Responsevariablen.- 10.1 Generalisierte lineare Modelle.- 10.2 Kontingenztafeln.- 10.3 GLM für Binären Response.- 10.4 Logitmodelle für kategoriale Daten.- 10.5 Güte der Anpassung-Likelihood-Quotienten Test.- 10.6 Loglineare Modelle für Kategoriale Variablen.- 10.7 Der Spezialfall binärer Responsevariablen.- 10.8 Kodierung kategorialer Kovariablen.- 10.9 Erweiterungen für abhängige binäre Variablen.- 11. Regression bei unvollständigen Daten.- 11.1 Statistische Methodenbei fehlenden Daten.- 11.2 Missing-Data-Mechanismen.- 11.3 Fehlend-Muster.- 11.4 Fehlende Daten im Response.- 11.5 Fehlende Werte in der X-Matrix.- 11.6 Standardverfahren bei unvollständiger X-Matrix.- 11.7 Imputationsmethoden für unvollständige X-Matrizen.- 11.8 Annahmen über den Fehlend-Mechanismus.- 11.9 Regressionsdiagnostik zur Identifizierung von Nicht-MCAR Prozessen.- 11.10 Behandlung von nichtignorierbarem Nichtresponse.- 11.11 Weitere Literatur.- A. Matrixalgebra.- A.1 Einführung.- A.2 Spur einer Matrix.- A.3 Determinanten.- A.4 Inverse.- A.5 Orthogonale Matrizen.- A.6 Rang einer Matrix.- A.7 Spalten-und Nullraum.- A.8 Eigenwerte und Eigenvektoren.- A.9 Zerlegung von Matrizen (Produktdarstellungen).- A.10 Definite Matrizen und quadratische Formen.- A.11 Idempotente Matrizen.- A.12 Verallgemeinerte Inverse.- A.13 Projektoren.- A.14 Funktionen normalverteilter Variablen.- A.15 Differentiation von skalaren Funktionen von Matrizen.- A.16 Stochastische Konvergenz.- B. Tabellenanhang.- B.1 Verteilungsfunktion ?(z) der StandardnormalverteilungN(0,1).- B.2 Dichtefunktion ø(z) der N(0,1)-Verteilung.
1. Einleitung.- 2. Beziehungen zwischen zwei Variablen.- 2.1 Einleitung-Beispiele.- 2.2 Darstellung der Verteilung zweidimensionaler Merkmale.- 2.3 Maßzahlen für den Zusammenhang zweier nominaler Merkmale.- 2.4 Rangkorrelationskoeffizient von Spearman.- 2.5 Zusammenhang zwischen zwei stetigen Merkmalen.- 3. Deskriptive univariate lineare Regression.- 3.1 Einleitung.- 3.2 Plots und Hypothesen.- 3.3 Prinzip der kleinsten Quadrate.- 3.4 Güte der Anpassung.- 3.5 Residualanalyse.- 3.6 Lineare Transformation der Originaldaten.- 3.7 Multiple lineare Regression und nichtlineare Regression.- 3.8 Polynomiale Regression.- 3.9 Lineare Regression mit kategorialen Regressoren.- 3.10 Spezielle nichtlineare Modelle.- 3.11 Zeitreihen.- 4. Das klassische multiple lineare Regressionsmodell.- 4.1 Deskriptive multiple lineare Regression.- 4.2 Prinzip der kleinsten Quadrate.- 4.3 Geometrische Eigenschaften der Kleinste-Quadrat-Schätzung.- 4.4 Beste lineare erwartungstreue Schätzung.- 4.5 Multikollinearität.- 4.6 Ökonometrische Gleichungen vom Regressionstyp.- 4.7 Klassische Normalregression.- 4.8 Prüfen von linearen Hypothesen.- 4.9 Varianzanalyse und Güte der Anpassung.- 4.10 Tests auf Parameterkonstanz.- 4.11 Die kanonische Form.- 4.12 Methoden zur Überwindung von Multikollinearität.- 4.13 Minimax-Schätzung.- 5. Modelle der Varianzanalyse.- 5.1 Varianzanalyse als spezielles lineares Modell.- 5.2 Einfaktorielle Varianzanalyse.- 5.3 Vergleich von einzelnen Mittelwerten.- 5.4 Multiple Vergleiche.- 5.5 Rangvarianzanalyse im vollständig randomisiertenVersuchsplan.- 5.6 Zwei- und Mehrfaktorielle Varianzanalyse.- 5.7 Zweifaktorielle Experimente mit Wechselwirkung (Modell mitfesten Effekten).- 5.8 Zweifaktorielles Experiment in Effektkodierung.- 5.9 2k-faktoriellesExperiment.- 6. Exakte und stochastische lineare Restriktionen.- 6.1 Verwendung von Zusatzinformation.- 6.2 Die restriktive KQ-Schätzung.- 6.3 Schrittweise Einbeziehung von exakten linearen Restriktionen.- 6.4 Verzerrte lineare Restriktionen und MSE-Vergleich mit derKQS.- 6.5 MSE-Matrix-Vergleiche zwischen zwei verzerrten Schätzern.- 6.6 MSE-Matrix-Vergleich zwischen zwei linearen verzerrtenSchätzern.- 6.7 MSE-Vergleich zweier (verzerrter) restriktiver Schätzer.- 6.8 Stochastische lineare Restriktionen.- 6.9 Abgeschwächte lineare Restriktionen.- 7. Das verallgemeinerte lineare Regressionsmodell.- 7.1 Einleitung.- 7.2 Optimale lineare Schätzungen von,Q.- 7.3 Aitken-Schätzung.- 7.4 Fehlspezifikation der Kovarianzmatrix.- 7.5 Heteroskedastie und Autoregression.- 8. Vorhersage von y im verallgemeinerten Regressionsmodell.- 8.1 Das Vorhersagemodell.- 8.2 Optimale inhomogene Vorhersage.- 8.3 Optimale homogene Vorhersagen.- 8.4 MSE-Matrix-Vergleiche zwischen optimalen und klassischenVorhersagen.- 8.5 Vorhersagebereiche.- 9. Sensitivitätsanalyse.- 9.1 Die Prediction-Matrix.- 9.2 Einfluss einer Beobachtung auf die Parameterschätzung.- 9.3 Grafische Methoden zum Prüfen von Modellannahmen.- 9.4 Maße auf der Basis des Konfidenzellipsoids.- 10. Modelle für kategoriale Responsevariablen.- 10.1 Generalisierte lineare Modelle.- 10.2 Kontingenztafeln.- 10.3 GLM für Binären Response.- 10.4 Logitmodelle für kategoriale Daten.- 10.5 Güte der Anpassung-Likelihood-Quotienten Test.- 10.6 Loglineare Modelle für Kategoriale Variablen.- 10.7 Der Spezialfall binärer Responsevariablen.- 10.8 Kodierung kategorialer Kovariablen.- 10.9 Erweiterungen für abhängige binäre Variablen.- 11. Regression bei unvollständigen Daten.- 11.1 Statistische Methodenbei fehlenden Daten.- 11.2 Missing-Data-Mechanismen.- 11.3 Fehlend-Muster.- 11.4 Fehlende Daten im Response.- 11.5 Fehlende Werte in der X-Matrix.- 11.6 Standardverfahren bei unvollständiger X-Matrix.- 11.7 Imputationsmethoden für unvollständige X-Matrizen.- 11.8 Annahmen über den Fehlend-Mechanismus.- 11.9 Regressionsdiagnostik zur Identifizierung von Nicht-MCAR Prozessen.- 11.10 Behandlung von nichtignorierbarem Nichtresponse.- 11.11 Weitere Literatur.- A. Matrixalgebra.- A.1 Einführung.- A.2 Spur einer Matrix.- A.3 Determinanten.- A.4 Inverse.- A.5 Orthogonale Matrizen.- A.6 Rang einer Matrix.- A.7 Spalten-und Nullraum.- A.8 Eigenwerte und Eigenvektoren.- A.9 Zerlegung von Matrizen (Produktdarstellungen).- A.10 Definite Matrizen und quadratische Formen.- A.11 Idempotente Matrizen.- A.12 Verallgemeinerte Inverse.- A.13 Projektoren.- A.14 Funktionen normalverteilter Variablen.- A.15 Differentiation von skalaren Funktionen von Matrizen.- A.16 Stochastische Konvergenz.- B. Tabellenanhang.- B.1 Verteilungsfunktion ?(z) der StandardnormalverteilungN(0,1).- B.2 Dichtefunktion ø(z) der N(0,1)-Verteilung.