Bekanntlich kann man in Rn (oder 0") (d. h. in einem Vektorraum uber R oder 0) eine lineare Abbildung a (im. vorliegenden Kapitel werden wir allgemein diese Schreibweise verwenden) vermittels der zu dieser Transformation gehorenden Matrix A bezuglich der Fundamentalbasis PlJ = {e ea , en} von Rn definieren. 1 Die i-te Spalte von A ist a(ei). Es sei PlJ' = lei, e . . e~} eine andere Basis von 2 Rn. Einem Vektor entsprechen die Zahlen ~1' ... ~~, so daB X = ~i ei + ~2 e+ ... + ~~ e~ ist; die 2 Zahlen ~~ sind die Komponenten von X bezuglich der Basis PlJ'. Sie konnen in einer Spalte angeordnet…mehr
Bekanntlich kann man in Rn (oder 0") (d. h. in einem Vektorraum uber R oder 0) eine lineare Abbildung a (im. vorliegenden Kapitel werden wir allgemein diese Schreibweise verwenden) vermittels der zu dieser Transformation gehorenden Matrix A bezuglich der Fundamentalbasis PlJ = {e ea , en} von Rn definieren. 1 Die i-te Spalte von A ist a(ei). Es sei PlJ' = lei, e . . e~} eine andere Basis von 2 Rn. Einem Vektor entsprechen die Zahlen ~1' ... ~~, so daB X = ~i ei + ~2 e+ ... + ~~ e~ ist; die 2 Zahlen ~~ sind die Komponenten von X bezuglich der Basis PlJ'. Sie konnen in einer Spalte angeordnet werden, und man erhalt damit den (Spalten-)Vektor Man erkennt sogleich, wie die Komponenten von X' in Abhangigkeit von X zu berechnen sind. Es seien .. e e e e ei = P11 l + P21 a + ... + Pnl n = E Pk1 k, k=l (I) n e~ = PI .. e+ Pan e+ ... + p,." en = E Ph ek 1 a k=l ej = 1; Pkjek). Fur X ergibt sich daraus (oder k=l X = i ~iej = i ~i (i Pklek) = 1; (i Pkj~l) ek = i ~kek.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1. Elementare Eigenschaften von Matrizen.- 1.1. Allgemeine Theorie.- 1.2. Matrizenrechnung.- 2. Vektor- und Matrizennormen.- 2.1. Grundlegende Eigenschaften.- 3. Invertierung von Matrizen-Theorie.- 3.1. Lineare Unabhängigkeit von Vektoren.- 3.2. Hauptsatz über die Existenz von Lösungen eines homogenen linearen Systems mit mehr Unbekannten als Gleichungen.- 3.3. Dimension.- 3.4. Isomorphie des Rn (bzw. Cn) zu jedem Vektorraum über R (bzw. C) von endlicher Dimension n.- 3.5. Umkehrbarkeit einer linearen Abbildung von Rn in Rm (bzw. von Cn in Cm).- 3.6. Linearität der inversen Abbildung einer umkehrbaren linearen Abbildung. Inverse Matrix.- 3.7. Indikator der linearen Unabhängigkeit.- 3.8. Eigenschaften der Determinanten.- 3.9. Existenz und Konstruktion von Determinanten.- 3.10. Formeln und Definitionen.- 3.11. Notwendige und hinreichende Bedingungen für die Invertierbarkeit einer Matrix A aus ?(n,n).- 3.12. Invertierbarkeit und Norm.- 3.13. Lösung eines linearen Systems (Theorie).- 4. Direkte Lösungsmethoden für lineare Systeme.- 4.1. Diagonalsysteme.- 4.2. Dreieckssysteme.- 4.3. Invertierung von Dreiecksmatrizen.- 4.4. Allgemeiner Fall: Der Gaußsche Algorithmus oder die Methode der einfachen Elimination.- 4.5. Der Gaußsche Algorithmus zur Lösung eines linearen Systems. Einfache Elimination; Rechenschema.- 4.6. Verbesserter Gaußscher Algorithmus. Das Verfahren von Crout.- 4.7. Die Methode von Jordan (Diagonalisierungsverfahren. Vollständige Elimination).- 4.8. Orthogonalisierungsmethoden. Schmidtsches Verfahren.- 4.9. Anwendung der allgemeinen direkten Verfahren zur Invertierung einer Matrix.- 4.10. Berechnung von Determinanten.- 4.11. Systeme mit symmetrischen Matrizen.- 4.12. Teilmatrizenverfahren.- 4.13. Ergänzungsverfahren.- Aufgaben zu denKapiteln 1-4.- 5. Indirekte Lösungsmethoden.- 5.1. Iteration und Relaxation.- 5.2. Lineare Iteration.- 5.3. Iterationen durch Projektionsmethoden.- 5.4. Iterationen für Systeme mit symmetrischer Matrix.- 5.5. Bemerkungen (für den Fall nichtsymmetrischer Systeme).- 5.6. Bemerkungen zur Konvergenz und Konvergenzverbesserung.- 5.7. Verbesserung der Elemente einer inversen Matrix (Hotelmng-Bodewig).- Aufgaben zu Kapitel 5.- 6. Invariante Unterräume.- 6.1. Einführung.- 6.2. Invariante Unterräume.- 6.3. Polynomtransformationen.- 6.4. Invariante Unterräume und Polynomtransformationen.- 6.5. Diagonalform.- 6.6. Das charakteristische Polynom.- 6.7. Polynommatrizen. Elementarteiler von Polynommatrizen.- 6.8. Normalformen. Basen bezüglich einer linearen Transformation.- 6.9. Funktionen von linearen Transformationen (Matrizenfunktionen).- 7. Anwendung der Eigenschaften invarianter Unterräume.- 7.1. Der Satz von Schub und Schlußfolgerungen.- 7.2. Polare Zerlegung.- 7.3. Matrizen mit nichtnegativen Elementen.- 7.4. Graphentheorie und Matrizen mit positiven Elementen.- 7.5. Vergleich der klassischen linearen Iterationen.- 7.6. Die Young-Frankelsche Theorie der Überrelaxation.- 7.7. Die Polynommethode. Das Verfahren von Peaceman-Rachford.- 7.8. Approximation des Spektralradius einer Matrix über eine Norm.- 8. Numerische Verfahren zur Berechnung von Eigenwerten und Eigenvektoren.- 8.1. Methoden zur direkten Bestimmung der charakteristischen Gleichung.- 8.2. Bestimmung des charakteristischen Polynoms mit Hilfe von Ähnlichkeitstransformationen.- 8.3. Berechnung von Eigenwerten und Eigenvektoren durch Iterationsverfahren (für nicht notwendig symmetrische Matrizen).- 8.4. Hermitesche (bzw. symmetrische) Matrizen.- Aufgaben zu den Kapiteln 6-8.- Literatur.- Namen- undSachverzeichnis.
1. Elementare Eigenschaften von Matrizen.- 1.1. Allgemeine Theorie.- 1.2. Matrizenrechnung.- 2. Vektor- und Matrizennormen.- 2.1. Grundlegende Eigenschaften.- 3. Invertierung von Matrizen-Theorie.- 3.1. Lineare Unabhängigkeit von Vektoren.- 3.2. Hauptsatz über die Existenz von Lösungen eines homogenen linearen Systems mit mehr Unbekannten als Gleichungen.- 3.3. Dimension.- 3.4. Isomorphie des Rn (bzw. Cn) zu jedem Vektorraum über R (bzw. C) von endlicher Dimension n.- 3.5. Umkehrbarkeit einer linearen Abbildung von Rn in Rm (bzw. von Cn in Cm).- 3.6. Linearität der inversen Abbildung einer umkehrbaren linearen Abbildung. Inverse Matrix.- 3.7. Indikator der linearen Unabhängigkeit.- 3.8. Eigenschaften der Determinanten.- 3.9. Existenz und Konstruktion von Determinanten.- 3.10. Formeln und Definitionen.- 3.11. Notwendige und hinreichende Bedingungen für die Invertierbarkeit einer Matrix A aus ?(n,n).- 3.12. Invertierbarkeit und Norm.- 3.13. Lösung eines linearen Systems (Theorie).- 4. Direkte Lösungsmethoden für lineare Systeme.- 4.1. Diagonalsysteme.- 4.2. Dreieckssysteme.- 4.3. Invertierung von Dreiecksmatrizen.- 4.4. Allgemeiner Fall: Der Gaußsche Algorithmus oder die Methode der einfachen Elimination.- 4.5. Der Gaußsche Algorithmus zur Lösung eines linearen Systems. Einfache Elimination; Rechenschema.- 4.6. Verbesserter Gaußscher Algorithmus. Das Verfahren von Crout.- 4.7. Die Methode von Jordan (Diagonalisierungsverfahren. Vollständige Elimination).- 4.8. Orthogonalisierungsmethoden. Schmidtsches Verfahren.- 4.9. Anwendung der allgemeinen direkten Verfahren zur Invertierung einer Matrix.- 4.10. Berechnung von Determinanten.- 4.11. Systeme mit symmetrischen Matrizen.- 4.12. Teilmatrizenverfahren.- 4.13. Ergänzungsverfahren.- Aufgaben zu denKapiteln 1-4.- 5. Indirekte Lösungsmethoden.- 5.1. Iteration und Relaxation.- 5.2. Lineare Iteration.- 5.3. Iterationen durch Projektionsmethoden.- 5.4. Iterationen für Systeme mit symmetrischer Matrix.- 5.5. Bemerkungen (für den Fall nichtsymmetrischer Systeme).- 5.6. Bemerkungen zur Konvergenz und Konvergenzverbesserung.- 5.7. Verbesserung der Elemente einer inversen Matrix (Hotelmng-Bodewig).- Aufgaben zu Kapitel 5.- 6. Invariante Unterräume.- 6.1. Einführung.- 6.2. Invariante Unterräume.- 6.3. Polynomtransformationen.- 6.4. Invariante Unterräume und Polynomtransformationen.- 6.5. Diagonalform.- 6.6. Das charakteristische Polynom.- 6.7. Polynommatrizen. Elementarteiler von Polynommatrizen.- 6.8. Normalformen. Basen bezüglich einer linearen Transformation.- 6.9. Funktionen von linearen Transformationen (Matrizenfunktionen).- 7. Anwendung der Eigenschaften invarianter Unterräume.- 7.1. Der Satz von Schub und Schlußfolgerungen.- 7.2. Polare Zerlegung.- 7.3. Matrizen mit nichtnegativen Elementen.- 7.4. Graphentheorie und Matrizen mit positiven Elementen.- 7.5. Vergleich der klassischen linearen Iterationen.- 7.6. Die Young-Frankelsche Theorie der Überrelaxation.- 7.7. Die Polynommethode. Das Verfahren von Peaceman-Rachford.- 7.8. Approximation des Spektralradius einer Matrix über eine Norm.- 8. Numerische Verfahren zur Berechnung von Eigenwerten und Eigenvektoren.- 8.1. Methoden zur direkten Bestimmung der charakteristischen Gleichung.- 8.2. Bestimmung des charakteristischen Polynoms mit Hilfe von Ähnlichkeitstransformationen.- 8.3. Berechnung von Eigenwerten und Eigenvektoren durch Iterationsverfahren (für nicht notwendig symmetrische Matrizen).- 8.4. Hermitesche (bzw. symmetrische) Matrizen.- Aufgaben zu den Kapiteln 6-8.- Literatur.- Namen- undSachverzeichnis.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826