45,00 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Broschiertes Buch

Since 1967 radioactive wastes have been disposed of in the Asse II salt mine in Northern Germany. A signifi-cant part of these wastes originated from the pilot reprocessing plant WAK in Karlsruhe and consisted of cemented NaNO3 solutions bearing fission products, actinides, as well as process chemicals. With respect to the long-term behavior of these wastes, the licensing authorities requested leaching experiments with full scale samples in relevant salt solutions which were performed since 1979. The experiments aimed at demonstrating the transferability of results obtained with laboratory…mehr

Produktbeschreibung
Since 1967 radioactive wastes have been disposed of in the Asse II salt mine in Northern Germany. A signifi-cant part of these wastes originated from the pilot reprocessing plant WAK in Karlsruhe and consisted of cemented NaNO3 solutions bearing fission products, actinides, as well as process chemicals. With respect to the long-term behavior of these wastes, the licensing authorities requested leaching experiments with full scale samples in relevant salt solutions which were performed since 1979. The experiments aimed at demonstrating the transferability of results obtained with laboratory samples to real waste forms and at the investigation of the effects of the industrial cementation process on the properties of the waste forms. This research program lasted until 2013. The corroding salt solutions were sampled several times and after termination of the experiments, the solid materials were analyzed by various methods. The results present-ed in this report cover the evolution ofthe solutions and the chemical and mineralogical characterization of the solids including radionuclides and waste components, and the paragenesis of solid phases (corrosion products). The outcome is compared to the results of model calculations. For safety analysis, conclusions are drawn on radionuclide retention, evolution of the geochemical environment, evolution of the density of solutions, and effects of temperature and porosity of the cement waste simulates on cesium mobilization.