115,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
58 °P sammeln
  • Gebundenes Buch

Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015.

Produktbeschreibung
Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
George K. Thiruvathukal is a professor of Computer Science at Loyola University Chicago, Illinois, USA. He is also a visiting faculty at Argonne National Laboratory. His research areas include high performance and distributed computing, software engineering, and programming languages. Yung-Hsiang Lu is a professor of Electrical and Computer Engineering at Purdue University, Indiana, USA. He is the first director of Purdue's John Martinson Engineering Entrepreneurial Center. He is a fellow of the IEEE and distinguished scientist of the ACM. His research interests include computer vision, mobile systems, and cloud computing. Jaeyoun Kim is a technical program manager at Google, California, USA. He leads AI research projects, including MobileNets and TensorFlow Model Garden, to build state-of-the-art machine learning models and modeling libraries for computer vision and natural language processing. Yiran Chen is a professor of Electrical and Computer Engineering at Duke University, North Carolina, USA. He is a fellow of the ACM and the IEEE. His research areas include new memory and storage systems, machine learning and neuromorphic computing, and mobile computing systems. Bo Chen is the Director of AutoML at DJI, Guangdong, China. Before joining DJI, he was a researcher at Google, California, USA. His research interests are the optimization of neural network software and hardware as well as landing AI technology in products with stringent resource constraints.