Lte Backhaul
Planning and Optimization
Herausgegeben von Metsälä, Esa; Salmelin, Juha
Lte Backhaul
Planning and Optimization
Herausgegeben von Metsälä, Esa; Salmelin, Juha
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The aim of this book is to enable network planners to realize and maintain cost efficient LTE backhaul networks, which meet the necessary performance requirements. Through an introduction to the technology background, the economical modelling, the dimensioning theory, planning and optimization processes and relevant network management aspects, the reader shall obtain all relevant information to achieve good backhaul results in their own network environment. It is aimed at network planners and other experts with responsibilities for LTE IP network dimensioning, LTE network planning, providing…mehr
Andere Kunden interessierten sich auch für
- Seungjune YiRadio Protocols for Lte and Lte-Advanced174,99 €
- Ayman ElNasharDesign, Deployment and Performance of 4G-LTE Networks113,99 €
- Joydeep AcharyaHeterogeneous Networks in LTE-Advanced119,99 €
- Houman ZarrinkoubUnderstanding LTE with MATLAB141,99 €
- Ralf KreherLte Signaling144,99 €
- Hung-Yu WeiWifi, Wimax, and Lte Multi-Hop Mesh Networks142,99 €
- Lte Advanced113,99 €
-
-
-
The aim of this book is to enable network planners to realize and maintain cost efficient LTE backhaul networks, which meet the necessary performance requirements. Through an introduction to the technology background, the economical modelling, the dimensioning theory, planning and optimization processes and relevant network management aspects, the reader shall obtain all relevant information to achieve good backhaul results in their own network environment. It is aimed at network planners and other experts with responsibilities for LTE IP network dimensioning, LTE network planning, providing and managing leased lines, business management, LTE IP network operation and optimization.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 312
- Erscheinungstermin: 20. November 2015
- Englisch
- Abmessung: 249mm x 172mm x 22mm
- Gewicht: 625g
- ISBN-13: 9781118924648
- ISBN-10: 1118924649
- Artikelnr.: 42057664
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 312
- Erscheinungstermin: 20. November 2015
- Englisch
- Abmessung: 249mm x 172mm x 22mm
- Gewicht: 625g
- ISBN-13: 9781118924648
- ISBN-10: 1118924649
- Artikelnr.: 42057664
Esa Metsala, Principal, Network and Transport, Nokia Networks, Finland. Esa has held different positions in Nokia, Nokia Siemens Networks and Nokia Solutions and Networks since 1990, in R&D, System and Business Management, Product Management, and Solution Management. He is currently leader of Radio Access Network system specification team for transport, and leader of a Feature screening team in Transport product management, and has been responsible for mobile backhaul system level specifications / requirements for over 10 yrs. He gives regular conference presentations on mobile transport, solution descriptions, customer presentations and has MSc Helsinki University of Technology, 1990 (Electrical Engineering, Telecommunications), MSc Helsinki School of Economics, 2008 (Business Law). Esa is Co-editor of Wiley title "Mobile Backhaul", 2012, with Juha Salmelin. Juha Salmelin, Manager, Mobile Transport, Nokia Networks, Finland. Juha began work at Nokia in 1988 and he has held a range of posts in R&D at Nokia, Nokia Siemens Networks and Nokia Solutions and Networks. He began as Asic designer of Microwave radios and continued with managing many different projects in transport product R&D. He has been team leader, department manager and Head of Technology roles in mobile backhaul products R&D including mobile backhaul e2e-solutions. He currently manages mobile backhaul in NSN Research. He has an MSc (Electrical Engineering) Helsinki University of Technology, 1988. He is Co-editor of Wiley title "Mobile Backhaul", 2012,with Esa Metsälä.
List of Contributors xi Foreword xiii Acknowledgments xv List of Abbreviations xvii 1 Introduction 1 Esa Markus Metsälä and Juha T.T. Salmelin 1.1 To the reader 1 1.2 Content 2 1.3 Scope 2 Reference 2 2 LTE Backhaul 3 Gerald Bedürftig, Jouko Kapanen, Esa Markus Metsälä and Juha T.T. Salmelin 2.1 Introduction 3 2.2 LTE Backhaul Planes 5 2.2.1 3GPP Planes and Protocol Stacks 5 2.2.2 Synchronization Plane 7 2.2.3 Management Plane 9 2.2.4 Active Monitoring Plane 9 2.2.5 Security Control Plane 10 2.2.6 Control and User Plane of Additional Proprietary Applications 10 2.3 Radio Features of LTE and LTE
A 11 2.3.1 LTE 11 2.3.2 LTE
A 12 2.4 R equirements for LTE Backhaul (SLAs) 17 2.4.1 Capacity 17 2.4.2 Latency and Loss 18 2.4.3 QoS Capabilities 21 2.4.4 Synchronization 21 2.4.5 Availability 22 2.4.6 Security 22 2.4.7 Examples 23 2.5 Transport Services 26 2.6 Planning Problems 27 2.7 LTE Backhaul Technologies 29 2.7.1 Access 30 2.7.2 Aggregation and Backbone Network 34 2.8 Small Cell Backhaul 34 2.9 Future Radio Features Affecting Backhaul 35 2.9.1 Inter NodeB CoMP (eCoMP) 35 2.9.2 Dual Connectivity 36 2.9.3 Dynamic eICIC 38 2.10 R elated Standards and Industry Forums 39 2.10.1 3GPP 39 2.10.2 ITU
T SG15 40 2.10.3 IEEE 802 40 2.10.4 IETF 40 2.10.5 MEF 40 2.10.6 NGMN 41 2.10.7 BBF 41 2.10.8 SCF 41 2.11 Operator Example 42 References 42 3 Economic Modeling and Strategic Input for Lte Backhaul 45 Gabriel Waller and Esa Markus Metsälä 3.1 Introduction 45 3.1.1 Role of Backhaul Within Lte 46 3.1.2 Why and What to Model 48 3.2 Strategic Input for Planning 49 3.2.1 Physical infrastructure 49 3.2.2 Transmission media 50 3.2.3 Capacity and interfaces 50 3.2.4 Network technologies 51 3.2.5 Network topology 51 3.2.6 Make or buy 51 3.2.7 Backhaul security aspects 52 3.3 Quantifying benefits 53 3.3.1 Revenue from LTE backhaul 53 3.3.2 Contribution to mobile service revenue 54 3.3.3 Cost savings 54 3.4 Quantifying costs 55 3.4.1 Equipment purchases 55 3.4.2 Economic lifetime 55 3.4.3 Operational costs 56 3.4.4 Other costs 57 3.5 Case router 58 3.5.1 Cash Flow 58 3.5.2 Payback Period 59 3.5.3 Net Present Value (NPV) 61 3.5.4 Selection of the Interest Rate 63 3.5.5 Internal Rate of Return 64 3.5.6 Return on Investment and Further Metrics 64 3.6 Wireless Backhaul Case Study 66 3.6.1 Case Definition 66 3.6.2 Payback Period 68 3.6.3 NPV 69 References 70 Further Reading 71 4 Dimensioning Aspects and Analytical Models of LTE MBH Networks 73 Csaba Vulkán and Juha T.T. Salmelin 4.1 Introduction 73 4.2 Dimensioning Paradigm 76 4.3 Applications and QoE: Considerations 78 4.3.1 Transmission Control Protocol 79 4.3.2 Web Browsing 83 4.3.3 Video Download 85 4.4 Dimensioning Requirements 87 4.5 Traffic Models 88 4.5.1 Peak Load or Busy Hour Load 92 4.5.2 Geographic Diversity and Daily Load Profile/Distribution 93 4.5.3 Session Level User Behavior 95 4.5.4 Burst Level User Behavior 99 4.5.5 Packet Level Behavior 102 4.5.6 Transmission Control Protocol Models 106 4.6 Network models 112 4.6.1 Queuing methods 113 4.6.2 Fluid Network Models 117 4.6.3 Network model 118 4.6.4 Routing and Requirement Allocations 119 4.7 Dimensioning 122 4.7.1 QoS
driven dimensioning 122 4.7.2 Reliability Requirement Based Dimensioning 124 References 127 5 Planning and Optimizing Mobile Backhaul for LTE 129 Raija Lilius, Jari Salo, José Manuel Tapia Pérez and Esa Markus Metsälä 5.1 Introduction 129 5.1.1 Planning and Optimization Process 130 5.1.2 High
Level Design Overview 131 5.2 Backhaul Network Deployment Scenarios 132 5.2.1 Connectivity Requirements 132 5.2.2 Differences Between Ethernet and IP Connectivity 133 5.2.3 Implications to Backhaul Scenarios 134 5.2.4 Ethernet Services 134 5.2.5 L3 VPN Service 136 5.2.6 Scenario 1: IP Access 137 5.2.7 Scenario 2: Ethernet Service in the Access 137 5.3 Network Topology and Transport Media 138 5.3.1 Access Network Topologies and Media 138 5.3.2 Aggregation Network Topologies 139 5.4 Availability and Resiliency Schemes 139 5.4.1 Availability Calculation 140 5.4.2 Link Resiliency and its Impact on Availability 141 5.4.3 Routing Gateway Redundancy 144 5.4.4 Ethernet Ring Protection (ERP) 147 5.4.5 IP and MPLS Rerouting 148 5.4.6 SCTP Multi
Homing 149 5.4.7 Connectivity Toward Multiple S
GWs and MMEs 149 5.4.8 Synchronization Protection 150 5.4.9 OSS Resiliency 150 5.4.10 End
töEnd Performance of Multilayer Redundancy 151 5.5 QoS Planning 152 5.5.1 QoS in an Access Transport Node 152 5.5.2 Packet Classification 153 5.5.3 Scheduling 156 5.5.4 Traffic Shaping 158 5.5.5 Active Queue Management and Bufferbloat 160 5.5.6 Connection Admission Control 161 5.6 Link Bandwidth Dimensioning 163 5.6.1 Obtaining Input Parameters for User Plane Bandwidth Dimensioning 164 5.6.2 Obtaining Input Parameters for Control Plane Bandwidth Dimensioning 169 5.6.3 Link Bandwidth Dimensioning: Single Queue 172 5.6.4 Link Bandwidth Dimensioning: Multiple Queues 180 5.6.5 Combining Signaling, Voice and Data Traffic 183 5.6.6 Comparison of Bandwidth Dimensioning Formulas 186 5.7 Dimensioning Other Traffic Types 187 5.7.1 Management Traffic 187 5.7.2 Synchronization Traffic 187 5.7.3 Other Traffic Types 188 5.8 Base Station Site Solutions 188 5.9 Security Solutions 189 5.9.1 Network Element Hardening 190 5.9.2 Network Security High
Level Architecture 190 5.9.3 Security Gateway High Availability 192 5.9.4 IPsec Parameter Planning 196 5.9.5 Public Key Infrastructure (PKI) 201 5.9.6 Self
Organizing Networks (SONs) and Security 203 5.10 IP Planning 203 5.10.1 IP Addressing Alternatives for eNB 204 5.10.2 VLAN Planning 206 5.10.3 IP Addressing 208 5.10.4 Dynamic Versus Static Routing 211 5.10.5 Examples 211 5.11 Synchronization Planning 214 5.11.1 Global Navigation Satellite System (GNSS) 215 5.11.2 Synchronous Ethernet (SyncE) 215 5.11.3 IEEE1588 (2008) Frequency Synchronization 218 5.11.4 IEEE1588 (2008) Phase Synchronization 222 5.12 Self
Organizing Networks (SON) and Management System Connectivity 226 5.12.1 Planning for SON 226 5.12.2 Data Communications Network (DCN) Planning for Transport Network and the Base Stations 227 5.13 LTE Backhaul Optimization 227 5.13.1 Introduction to LTE Backhaul Optimization 227 5.13.2 Proactive Methods 228 5.13.3 Reactive Methods 231 5.13.4 Active vs. Passive Methods 232 References 236 6 Design Examples 239 Jari Salo and Esa Markus Metsälä 6.1 Introduction 239 6.2 Scenario #1: Microwave 239 6.2.1 Synchronization 240 6.2.2 IP Planning 242 6.2.3 Availability 245 6.3 Scenario #2: Leased Line 254 6.3.1 Assumptions for the Use Case 254 6.3.2 Comparing Transport Providers 254 6.3.3 The Solution Summary 258 Reference 258 7 Network Management 259 Raimo Kangas and Esa Markus Metsälä 7.1 Introduction 259 7.2 NMS Architecture 260 7.3 Fault Management 262 7.4 Performance Management 263 7.5 Configuration Management (CM) 263 7.5.1 Maintaining an Up
töDate Picture of the Network 264 7.5.2 Configuration History 264 7.5.3 Configuring Network 265 7.5.4 Policy
Based Configuration Management 265 7.5.5 Planning Interfaces 266 7.5.6 Network Configuration Discovery 267 7.5.7 Configuration Management of Backhaul Network 267 7.6 Optimization 268 7.7 Self
Organizing Network (SON) 270 7.8 O&M Protocols 272 7.8.1 SNMP 273 7.8.2 NETCONF 275 7.9 Planning of Network Management System 275 7.9.1 Strategic Planning 276 7.9.2 Analysis 276 7.9.3 Design 277 7.9.4 Implementation 278 7.9.5 Maintenance 278 References 278 8 Summary 279 Esa Markus Metsälä and Juha T.T. Salmelin Index 281
A 11 2.3.1 LTE 11 2.3.2 LTE
A 12 2.4 R equirements for LTE Backhaul (SLAs) 17 2.4.1 Capacity 17 2.4.2 Latency and Loss 18 2.4.3 QoS Capabilities 21 2.4.4 Synchronization 21 2.4.5 Availability 22 2.4.6 Security 22 2.4.7 Examples 23 2.5 Transport Services 26 2.6 Planning Problems 27 2.7 LTE Backhaul Technologies 29 2.7.1 Access 30 2.7.2 Aggregation and Backbone Network 34 2.8 Small Cell Backhaul 34 2.9 Future Radio Features Affecting Backhaul 35 2.9.1 Inter NodeB CoMP (eCoMP) 35 2.9.2 Dual Connectivity 36 2.9.3 Dynamic eICIC 38 2.10 R elated Standards and Industry Forums 39 2.10.1 3GPP 39 2.10.2 ITU
T SG15 40 2.10.3 IEEE 802 40 2.10.4 IETF 40 2.10.5 MEF 40 2.10.6 NGMN 41 2.10.7 BBF 41 2.10.8 SCF 41 2.11 Operator Example 42 References 42 3 Economic Modeling and Strategic Input for Lte Backhaul 45 Gabriel Waller and Esa Markus Metsälä 3.1 Introduction 45 3.1.1 Role of Backhaul Within Lte 46 3.1.2 Why and What to Model 48 3.2 Strategic Input for Planning 49 3.2.1 Physical infrastructure 49 3.2.2 Transmission media 50 3.2.3 Capacity and interfaces 50 3.2.4 Network technologies 51 3.2.5 Network topology 51 3.2.6 Make or buy 51 3.2.7 Backhaul security aspects 52 3.3 Quantifying benefits 53 3.3.1 Revenue from LTE backhaul 53 3.3.2 Contribution to mobile service revenue 54 3.3.3 Cost savings 54 3.4 Quantifying costs 55 3.4.1 Equipment purchases 55 3.4.2 Economic lifetime 55 3.4.3 Operational costs 56 3.4.4 Other costs 57 3.5 Case router 58 3.5.1 Cash Flow 58 3.5.2 Payback Period 59 3.5.3 Net Present Value (NPV) 61 3.5.4 Selection of the Interest Rate 63 3.5.5 Internal Rate of Return 64 3.5.6 Return on Investment and Further Metrics 64 3.6 Wireless Backhaul Case Study 66 3.6.1 Case Definition 66 3.6.2 Payback Period 68 3.6.3 NPV 69 References 70 Further Reading 71 4 Dimensioning Aspects and Analytical Models of LTE MBH Networks 73 Csaba Vulkán and Juha T.T. Salmelin 4.1 Introduction 73 4.2 Dimensioning Paradigm 76 4.3 Applications and QoE: Considerations 78 4.3.1 Transmission Control Protocol 79 4.3.2 Web Browsing 83 4.3.3 Video Download 85 4.4 Dimensioning Requirements 87 4.5 Traffic Models 88 4.5.1 Peak Load or Busy Hour Load 92 4.5.2 Geographic Diversity and Daily Load Profile/Distribution 93 4.5.3 Session Level User Behavior 95 4.5.4 Burst Level User Behavior 99 4.5.5 Packet Level Behavior 102 4.5.6 Transmission Control Protocol Models 106 4.6 Network models 112 4.6.1 Queuing methods 113 4.6.2 Fluid Network Models 117 4.6.3 Network model 118 4.6.4 Routing and Requirement Allocations 119 4.7 Dimensioning 122 4.7.1 QoS
driven dimensioning 122 4.7.2 Reliability Requirement Based Dimensioning 124 References 127 5 Planning and Optimizing Mobile Backhaul for LTE 129 Raija Lilius, Jari Salo, José Manuel Tapia Pérez and Esa Markus Metsälä 5.1 Introduction 129 5.1.1 Planning and Optimization Process 130 5.1.2 High
Level Design Overview 131 5.2 Backhaul Network Deployment Scenarios 132 5.2.1 Connectivity Requirements 132 5.2.2 Differences Between Ethernet and IP Connectivity 133 5.2.3 Implications to Backhaul Scenarios 134 5.2.4 Ethernet Services 134 5.2.5 L3 VPN Service 136 5.2.6 Scenario 1: IP Access 137 5.2.7 Scenario 2: Ethernet Service in the Access 137 5.3 Network Topology and Transport Media 138 5.3.1 Access Network Topologies and Media 138 5.3.2 Aggregation Network Topologies 139 5.4 Availability and Resiliency Schemes 139 5.4.1 Availability Calculation 140 5.4.2 Link Resiliency and its Impact on Availability 141 5.4.3 Routing Gateway Redundancy 144 5.4.4 Ethernet Ring Protection (ERP) 147 5.4.5 IP and MPLS Rerouting 148 5.4.6 SCTP Multi
Homing 149 5.4.7 Connectivity Toward Multiple S
GWs and MMEs 149 5.4.8 Synchronization Protection 150 5.4.9 OSS Resiliency 150 5.4.10 End
töEnd Performance of Multilayer Redundancy 151 5.5 QoS Planning 152 5.5.1 QoS in an Access Transport Node 152 5.5.2 Packet Classification 153 5.5.3 Scheduling 156 5.5.4 Traffic Shaping 158 5.5.5 Active Queue Management and Bufferbloat 160 5.5.6 Connection Admission Control 161 5.6 Link Bandwidth Dimensioning 163 5.6.1 Obtaining Input Parameters for User Plane Bandwidth Dimensioning 164 5.6.2 Obtaining Input Parameters for Control Plane Bandwidth Dimensioning 169 5.6.3 Link Bandwidth Dimensioning: Single Queue 172 5.6.4 Link Bandwidth Dimensioning: Multiple Queues 180 5.6.5 Combining Signaling, Voice and Data Traffic 183 5.6.6 Comparison of Bandwidth Dimensioning Formulas 186 5.7 Dimensioning Other Traffic Types 187 5.7.1 Management Traffic 187 5.7.2 Synchronization Traffic 187 5.7.3 Other Traffic Types 188 5.8 Base Station Site Solutions 188 5.9 Security Solutions 189 5.9.1 Network Element Hardening 190 5.9.2 Network Security High
Level Architecture 190 5.9.3 Security Gateway High Availability 192 5.9.4 IPsec Parameter Planning 196 5.9.5 Public Key Infrastructure (PKI) 201 5.9.6 Self
Organizing Networks (SONs) and Security 203 5.10 IP Planning 203 5.10.1 IP Addressing Alternatives for eNB 204 5.10.2 VLAN Planning 206 5.10.3 IP Addressing 208 5.10.4 Dynamic Versus Static Routing 211 5.10.5 Examples 211 5.11 Synchronization Planning 214 5.11.1 Global Navigation Satellite System (GNSS) 215 5.11.2 Synchronous Ethernet (SyncE) 215 5.11.3 IEEE1588 (2008) Frequency Synchronization 218 5.11.4 IEEE1588 (2008) Phase Synchronization 222 5.12 Self
Organizing Networks (SON) and Management System Connectivity 226 5.12.1 Planning for SON 226 5.12.2 Data Communications Network (DCN) Planning for Transport Network and the Base Stations 227 5.13 LTE Backhaul Optimization 227 5.13.1 Introduction to LTE Backhaul Optimization 227 5.13.2 Proactive Methods 228 5.13.3 Reactive Methods 231 5.13.4 Active vs. Passive Methods 232 References 236 6 Design Examples 239 Jari Salo and Esa Markus Metsälä 6.1 Introduction 239 6.2 Scenario #1: Microwave 239 6.2.1 Synchronization 240 6.2.2 IP Planning 242 6.2.3 Availability 245 6.3 Scenario #2: Leased Line 254 6.3.1 Assumptions for the Use Case 254 6.3.2 Comparing Transport Providers 254 6.3.3 The Solution Summary 258 Reference 258 7 Network Management 259 Raimo Kangas and Esa Markus Metsälä 7.1 Introduction 259 7.2 NMS Architecture 260 7.3 Fault Management 262 7.4 Performance Management 263 7.5 Configuration Management (CM) 263 7.5.1 Maintaining an Up
töDate Picture of the Network 264 7.5.2 Configuration History 264 7.5.3 Configuring Network 265 7.5.4 Policy
Based Configuration Management 265 7.5.5 Planning Interfaces 266 7.5.6 Network Configuration Discovery 267 7.5.7 Configuration Management of Backhaul Network 267 7.6 Optimization 268 7.7 Self
Organizing Network (SON) 270 7.8 O&M Protocols 272 7.8.1 SNMP 273 7.8.2 NETCONF 275 7.9 Planning of Network Management System 275 7.9.1 Strategic Planning 276 7.9.2 Analysis 276 7.9.3 Design 277 7.9.4 Implementation 278 7.9.5 Maintenance 278 References 278 8 Summary 279 Esa Markus Metsälä and Juha T.T. Salmelin Index 281
List of Contributors xi Foreword xiii Acknowledgments xv List of Abbreviations xvii 1 Introduction 1 Esa Markus Metsälä and Juha T.T. Salmelin 1.1 To the reader 1 1.2 Content 2 1.3 Scope 2 Reference 2 2 LTE Backhaul 3 Gerald Bedürftig, Jouko Kapanen, Esa Markus Metsälä and Juha T.T. Salmelin 2.1 Introduction 3 2.2 LTE Backhaul Planes 5 2.2.1 3GPP Planes and Protocol Stacks 5 2.2.2 Synchronization Plane 7 2.2.3 Management Plane 9 2.2.4 Active Monitoring Plane 9 2.2.5 Security Control Plane 10 2.2.6 Control and User Plane of Additional Proprietary Applications 10 2.3 Radio Features of LTE and LTE
A 11 2.3.1 LTE 11 2.3.2 LTE
A 12 2.4 R equirements for LTE Backhaul (SLAs) 17 2.4.1 Capacity 17 2.4.2 Latency and Loss 18 2.4.3 QoS Capabilities 21 2.4.4 Synchronization 21 2.4.5 Availability 22 2.4.6 Security 22 2.4.7 Examples 23 2.5 Transport Services 26 2.6 Planning Problems 27 2.7 LTE Backhaul Technologies 29 2.7.1 Access 30 2.7.2 Aggregation and Backbone Network 34 2.8 Small Cell Backhaul 34 2.9 Future Radio Features Affecting Backhaul 35 2.9.1 Inter NodeB CoMP (eCoMP) 35 2.9.2 Dual Connectivity 36 2.9.3 Dynamic eICIC 38 2.10 R elated Standards and Industry Forums 39 2.10.1 3GPP 39 2.10.2 ITU
T SG15 40 2.10.3 IEEE 802 40 2.10.4 IETF 40 2.10.5 MEF 40 2.10.6 NGMN 41 2.10.7 BBF 41 2.10.8 SCF 41 2.11 Operator Example 42 References 42 3 Economic Modeling and Strategic Input for Lte Backhaul 45 Gabriel Waller and Esa Markus Metsälä 3.1 Introduction 45 3.1.1 Role of Backhaul Within Lte 46 3.1.2 Why and What to Model 48 3.2 Strategic Input for Planning 49 3.2.1 Physical infrastructure 49 3.2.2 Transmission media 50 3.2.3 Capacity and interfaces 50 3.2.4 Network technologies 51 3.2.5 Network topology 51 3.2.6 Make or buy 51 3.2.7 Backhaul security aspects 52 3.3 Quantifying benefits 53 3.3.1 Revenue from LTE backhaul 53 3.3.2 Contribution to mobile service revenue 54 3.3.3 Cost savings 54 3.4 Quantifying costs 55 3.4.1 Equipment purchases 55 3.4.2 Economic lifetime 55 3.4.3 Operational costs 56 3.4.4 Other costs 57 3.5 Case router 58 3.5.1 Cash Flow 58 3.5.2 Payback Period 59 3.5.3 Net Present Value (NPV) 61 3.5.4 Selection of the Interest Rate 63 3.5.5 Internal Rate of Return 64 3.5.6 Return on Investment and Further Metrics 64 3.6 Wireless Backhaul Case Study 66 3.6.1 Case Definition 66 3.6.2 Payback Period 68 3.6.3 NPV 69 References 70 Further Reading 71 4 Dimensioning Aspects and Analytical Models of LTE MBH Networks 73 Csaba Vulkán and Juha T.T. Salmelin 4.1 Introduction 73 4.2 Dimensioning Paradigm 76 4.3 Applications and QoE: Considerations 78 4.3.1 Transmission Control Protocol 79 4.3.2 Web Browsing 83 4.3.3 Video Download 85 4.4 Dimensioning Requirements 87 4.5 Traffic Models 88 4.5.1 Peak Load or Busy Hour Load 92 4.5.2 Geographic Diversity and Daily Load Profile/Distribution 93 4.5.3 Session Level User Behavior 95 4.5.4 Burst Level User Behavior 99 4.5.5 Packet Level Behavior 102 4.5.6 Transmission Control Protocol Models 106 4.6 Network models 112 4.6.1 Queuing methods 113 4.6.2 Fluid Network Models 117 4.6.3 Network model 118 4.6.4 Routing and Requirement Allocations 119 4.7 Dimensioning 122 4.7.1 QoS
driven dimensioning 122 4.7.2 Reliability Requirement Based Dimensioning 124 References 127 5 Planning and Optimizing Mobile Backhaul for LTE 129 Raija Lilius, Jari Salo, José Manuel Tapia Pérez and Esa Markus Metsälä 5.1 Introduction 129 5.1.1 Planning and Optimization Process 130 5.1.2 High
Level Design Overview 131 5.2 Backhaul Network Deployment Scenarios 132 5.2.1 Connectivity Requirements 132 5.2.2 Differences Between Ethernet and IP Connectivity 133 5.2.3 Implications to Backhaul Scenarios 134 5.2.4 Ethernet Services 134 5.2.5 L3 VPN Service 136 5.2.6 Scenario 1: IP Access 137 5.2.7 Scenario 2: Ethernet Service in the Access 137 5.3 Network Topology and Transport Media 138 5.3.1 Access Network Topologies and Media 138 5.3.2 Aggregation Network Topologies 139 5.4 Availability and Resiliency Schemes 139 5.4.1 Availability Calculation 140 5.4.2 Link Resiliency and its Impact on Availability 141 5.4.3 Routing Gateway Redundancy 144 5.4.4 Ethernet Ring Protection (ERP) 147 5.4.5 IP and MPLS Rerouting 148 5.4.6 SCTP Multi
Homing 149 5.4.7 Connectivity Toward Multiple S
GWs and MMEs 149 5.4.8 Synchronization Protection 150 5.4.9 OSS Resiliency 150 5.4.10 End
töEnd Performance of Multilayer Redundancy 151 5.5 QoS Planning 152 5.5.1 QoS in an Access Transport Node 152 5.5.2 Packet Classification 153 5.5.3 Scheduling 156 5.5.4 Traffic Shaping 158 5.5.5 Active Queue Management and Bufferbloat 160 5.5.6 Connection Admission Control 161 5.6 Link Bandwidth Dimensioning 163 5.6.1 Obtaining Input Parameters for User Plane Bandwidth Dimensioning 164 5.6.2 Obtaining Input Parameters for Control Plane Bandwidth Dimensioning 169 5.6.3 Link Bandwidth Dimensioning: Single Queue 172 5.6.4 Link Bandwidth Dimensioning: Multiple Queues 180 5.6.5 Combining Signaling, Voice and Data Traffic 183 5.6.6 Comparison of Bandwidth Dimensioning Formulas 186 5.7 Dimensioning Other Traffic Types 187 5.7.1 Management Traffic 187 5.7.2 Synchronization Traffic 187 5.7.3 Other Traffic Types 188 5.8 Base Station Site Solutions 188 5.9 Security Solutions 189 5.9.1 Network Element Hardening 190 5.9.2 Network Security High
Level Architecture 190 5.9.3 Security Gateway High Availability 192 5.9.4 IPsec Parameter Planning 196 5.9.5 Public Key Infrastructure (PKI) 201 5.9.6 Self
Organizing Networks (SONs) and Security 203 5.10 IP Planning 203 5.10.1 IP Addressing Alternatives for eNB 204 5.10.2 VLAN Planning 206 5.10.3 IP Addressing 208 5.10.4 Dynamic Versus Static Routing 211 5.10.5 Examples 211 5.11 Synchronization Planning 214 5.11.1 Global Navigation Satellite System (GNSS) 215 5.11.2 Synchronous Ethernet (SyncE) 215 5.11.3 IEEE1588 (2008) Frequency Synchronization 218 5.11.4 IEEE1588 (2008) Phase Synchronization 222 5.12 Self
Organizing Networks (SON) and Management System Connectivity 226 5.12.1 Planning for SON 226 5.12.2 Data Communications Network (DCN) Planning for Transport Network and the Base Stations 227 5.13 LTE Backhaul Optimization 227 5.13.1 Introduction to LTE Backhaul Optimization 227 5.13.2 Proactive Methods 228 5.13.3 Reactive Methods 231 5.13.4 Active vs. Passive Methods 232 References 236 6 Design Examples 239 Jari Salo and Esa Markus Metsälä 6.1 Introduction 239 6.2 Scenario #1: Microwave 239 6.2.1 Synchronization 240 6.2.2 IP Planning 242 6.2.3 Availability 245 6.3 Scenario #2: Leased Line 254 6.3.1 Assumptions for the Use Case 254 6.3.2 Comparing Transport Providers 254 6.3.3 The Solution Summary 258 Reference 258 7 Network Management 259 Raimo Kangas and Esa Markus Metsälä 7.1 Introduction 259 7.2 NMS Architecture 260 7.3 Fault Management 262 7.4 Performance Management 263 7.5 Configuration Management (CM) 263 7.5.1 Maintaining an Up
töDate Picture of the Network 264 7.5.2 Configuration History 264 7.5.3 Configuring Network 265 7.5.4 Policy
Based Configuration Management 265 7.5.5 Planning Interfaces 266 7.5.6 Network Configuration Discovery 267 7.5.7 Configuration Management of Backhaul Network 267 7.6 Optimization 268 7.7 Self
Organizing Network (SON) 270 7.8 O&M Protocols 272 7.8.1 SNMP 273 7.8.2 NETCONF 275 7.9 Planning of Network Management System 275 7.9.1 Strategic Planning 276 7.9.2 Analysis 276 7.9.3 Design 277 7.9.4 Implementation 278 7.9.5 Maintenance 278 References 278 8 Summary 279 Esa Markus Metsälä and Juha T.T. Salmelin Index 281
A 11 2.3.1 LTE 11 2.3.2 LTE
A 12 2.4 R equirements for LTE Backhaul (SLAs) 17 2.4.1 Capacity 17 2.4.2 Latency and Loss 18 2.4.3 QoS Capabilities 21 2.4.4 Synchronization 21 2.4.5 Availability 22 2.4.6 Security 22 2.4.7 Examples 23 2.5 Transport Services 26 2.6 Planning Problems 27 2.7 LTE Backhaul Technologies 29 2.7.1 Access 30 2.7.2 Aggregation and Backbone Network 34 2.8 Small Cell Backhaul 34 2.9 Future Radio Features Affecting Backhaul 35 2.9.1 Inter NodeB CoMP (eCoMP) 35 2.9.2 Dual Connectivity 36 2.9.3 Dynamic eICIC 38 2.10 R elated Standards and Industry Forums 39 2.10.1 3GPP 39 2.10.2 ITU
T SG15 40 2.10.3 IEEE 802 40 2.10.4 IETF 40 2.10.5 MEF 40 2.10.6 NGMN 41 2.10.7 BBF 41 2.10.8 SCF 41 2.11 Operator Example 42 References 42 3 Economic Modeling and Strategic Input for Lte Backhaul 45 Gabriel Waller and Esa Markus Metsälä 3.1 Introduction 45 3.1.1 Role of Backhaul Within Lte 46 3.1.2 Why and What to Model 48 3.2 Strategic Input for Planning 49 3.2.1 Physical infrastructure 49 3.2.2 Transmission media 50 3.2.3 Capacity and interfaces 50 3.2.4 Network technologies 51 3.2.5 Network topology 51 3.2.6 Make or buy 51 3.2.7 Backhaul security aspects 52 3.3 Quantifying benefits 53 3.3.1 Revenue from LTE backhaul 53 3.3.2 Contribution to mobile service revenue 54 3.3.3 Cost savings 54 3.4 Quantifying costs 55 3.4.1 Equipment purchases 55 3.4.2 Economic lifetime 55 3.4.3 Operational costs 56 3.4.4 Other costs 57 3.5 Case router 58 3.5.1 Cash Flow 58 3.5.2 Payback Period 59 3.5.3 Net Present Value (NPV) 61 3.5.4 Selection of the Interest Rate 63 3.5.5 Internal Rate of Return 64 3.5.6 Return on Investment and Further Metrics 64 3.6 Wireless Backhaul Case Study 66 3.6.1 Case Definition 66 3.6.2 Payback Period 68 3.6.3 NPV 69 References 70 Further Reading 71 4 Dimensioning Aspects and Analytical Models of LTE MBH Networks 73 Csaba Vulkán and Juha T.T. Salmelin 4.1 Introduction 73 4.2 Dimensioning Paradigm 76 4.3 Applications and QoE: Considerations 78 4.3.1 Transmission Control Protocol 79 4.3.2 Web Browsing 83 4.3.3 Video Download 85 4.4 Dimensioning Requirements 87 4.5 Traffic Models 88 4.5.1 Peak Load or Busy Hour Load 92 4.5.2 Geographic Diversity and Daily Load Profile/Distribution 93 4.5.3 Session Level User Behavior 95 4.5.4 Burst Level User Behavior 99 4.5.5 Packet Level Behavior 102 4.5.6 Transmission Control Protocol Models 106 4.6 Network models 112 4.6.1 Queuing methods 113 4.6.2 Fluid Network Models 117 4.6.3 Network model 118 4.6.4 Routing and Requirement Allocations 119 4.7 Dimensioning 122 4.7.1 QoS
driven dimensioning 122 4.7.2 Reliability Requirement Based Dimensioning 124 References 127 5 Planning and Optimizing Mobile Backhaul for LTE 129 Raija Lilius, Jari Salo, José Manuel Tapia Pérez and Esa Markus Metsälä 5.1 Introduction 129 5.1.1 Planning and Optimization Process 130 5.1.2 High
Level Design Overview 131 5.2 Backhaul Network Deployment Scenarios 132 5.2.1 Connectivity Requirements 132 5.2.2 Differences Between Ethernet and IP Connectivity 133 5.2.3 Implications to Backhaul Scenarios 134 5.2.4 Ethernet Services 134 5.2.5 L3 VPN Service 136 5.2.6 Scenario 1: IP Access 137 5.2.7 Scenario 2: Ethernet Service in the Access 137 5.3 Network Topology and Transport Media 138 5.3.1 Access Network Topologies and Media 138 5.3.2 Aggregation Network Topologies 139 5.4 Availability and Resiliency Schemes 139 5.4.1 Availability Calculation 140 5.4.2 Link Resiliency and its Impact on Availability 141 5.4.3 Routing Gateway Redundancy 144 5.4.4 Ethernet Ring Protection (ERP) 147 5.4.5 IP and MPLS Rerouting 148 5.4.6 SCTP Multi
Homing 149 5.4.7 Connectivity Toward Multiple S
GWs and MMEs 149 5.4.8 Synchronization Protection 150 5.4.9 OSS Resiliency 150 5.4.10 End
töEnd Performance of Multilayer Redundancy 151 5.5 QoS Planning 152 5.5.1 QoS in an Access Transport Node 152 5.5.2 Packet Classification 153 5.5.3 Scheduling 156 5.5.4 Traffic Shaping 158 5.5.5 Active Queue Management and Bufferbloat 160 5.5.6 Connection Admission Control 161 5.6 Link Bandwidth Dimensioning 163 5.6.1 Obtaining Input Parameters for User Plane Bandwidth Dimensioning 164 5.6.2 Obtaining Input Parameters for Control Plane Bandwidth Dimensioning 169 5.6.3 Link Bandwidth Dimensioning: Single Queue 172 5.6.4 Link Bandwidth Dimensioning: Multiple Queues 180 5.6.5 Combining Signaling, Voice and Data Traffic 183 5.6.6 Comparison of Bandwidth Dimensioning Formulas 186 5.7 Dimensioning Other Traffic Types 187 5.7.1 Management Traffic 187 5.7.2 Synchronization Traffic 187 5.7.3 Other Traffic Types 188 5.8 Base Station Site Solutions 188 5.9 Security Solutions 189 5.9.1 Network Element Hardening 190 5.9.2 Network Security High
Level Architecture 190 5.9.3 Security Gateway High Availability 192 5.9.4 IPsec Parameter Planning 196 5.9.5 Public Key Infrastructure (PKI) 201 5.9.6 Self
Organizing Networks (SONs) and Security 203 5.10 IP Planning 203 5.10.1 IP Addressing Alternatives for eNB 204 5.10.2 VLAN Planning 206 5.10.3 IP Addressing 208 5.10.4 Dynamic Versus Static Routing 211 5.10.5 Examples 211 5.11 Synchronization Planning 214 5.11.1 Global Navigation Satellite System (GNSS) 215 5.11.2 Synchronous Ethernet (SyncE) 215 5.11.3 IEEE1588 (2008) Frequency Synchronization 218 5.11.4 IEEE1588 (2008) Phase Synchronization 222 5.12 Self
Organizing Networks (SON) and Management System Connectivity 226 5.12.1 Planning for SON 226 5.12.2 Data Communications Network (DCN) Planning for Transport Network and the Base Stations 227 5.13 LTE Backhaul Optimization 227 5.13.1 Introduction to LTE Backhaul Optimization 227 5.13.2 Proactive Methods 228 5.13.3 Reactive Methods 231 5.13.4 Active vs. Passive Methods 232 References 236 6 Design Examples 239 Jari Salo and Esa Markus Metsälä 6.1 Introduction 239 6.2 Scenario #1: Microwave 239 6.2.1 Synchronization 240 6.2.2 IP Planning 242 6.2.3 Availability 245 6.3 Scenario #2: Leased Line 254 6.3.1 Assumptions for the Use Case 254 6.3.2 Comparing Transport Providers 254 6.3.3 The Solution Summary 258 Reference 258 7 Network Management 259 Raimo Kangas and Esa Markus Metsälä 7.1 Introduction 259 7.2 NMS Architecture 260 7.3 Fault Management 262 7.4 Performance Management 263 7.5 Configuration Management (CM) 263 7.5.1 Maintaining an Up
töDate Picture of the Network 264 7.5.2 Configuration History 264 7.5.3 Configuring Network 265 7.5.4 Policy
Based Configuration Management 265 7.5.5 Planning Interfaces 266 7.5.6 Network Configuration Discovery 267 7.5.7 Configuration Management of Backhaul Network 267 7.6 Optimization 268 7.7 Self
Organizing Network (SON) 270 7.8 O&M Protocols 272 7.8.1 SNMP 273 7.8.2 NETCONF 275 7.9 Planning of Network Management System 275 7.9.1 Strategic Planning 276 7.9.2 Analysis 276 7.9.3 Design 277 7.9.4 Implementation 278 7.9.5 Maintenance 278 References 278 8 Summary 279 Esa Markus Metsälä and Juha T.T. Salmelin Index 281