144,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
72 °P sammeln
  • Broschiertes Buch

Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing,…mehr

Produktbeschreibung
Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Patrick Bangert is the Vice President of Artificial Intelligence at Samsung SDS where he leads both the AI software development and AI consulting groups that each provide various offerings to the industry. He is the founder and Board Chair of Algorithmica Technologies, providing real-time process modeling, optimization, and predictive maintenance solutions to the process industry with a focus on chemistry and power generation. His doctorate from UCL specialized in applied mathematics, and his academic positions at NASA's Jet Propulsion Laboratory and Los Alamos National Laboratory made use of optimization and machine learning for magnetohydrodynamics and particle accelerator experiments. He has published extensively across optimization and machine learning and their relevant applications in the real world.