Machine Learning and Wireless Communications
Herausgeber: Eldar, Yonina C; Poor, H Vincent; Gündüz, Deniz; Goldsmith, Andrea
Machine Learning and Wireless Communications
Herausgeber: Eldar, Yonina C; Poor, H Vincent; Gündüz, Deniz; Goldsmith, Andrea
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
How can machine learning help the design of future communication networks? How can future wireless networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most impactful technologies of our age in this comprehensive book, with accessible introductions and real-world examples.
Andere Kunden interessierten sich auch für
- Paul RP Hoole (UK Wessex Institute of Technology)Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless Technology145,99 €
- Theodore S. RappaportWireless Communications134,99 €
- Paulo S. R. Diniz (Universidade Federal do Rio de Janeiro)Online Learning and Adaptive Filters112,99 €
- Venugopal V. Veeravalli (Urbana-Champaign University of Illinois)Interference Management in Wireless Networks124,99 €
- Machine-To-Machine (M2m) Communications325,99 €
- Prof Max A. Little (Professor of Mathematics, Aston University, ProMachine Learning for Signal Processing52,99 €
- Advanced Relay Technologies in Next Generation Wireless Communications186,99 €
-
-
-
How can machine learning help the design of future communication networks? How can future wireless networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most impactful technologies of our age in this comprehensive book, with accessible introductions and real-world examples.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 554
- Erscheinungstermin: 4. August 2022
- Englisch
- Abmessung: 247mm x 172mm x 30mm
- Gewicht: 1196g
- ISBN-13: 9781108832984
- ISBN-10: 1108832989
- Artikelnr.: 63396959
- Verlag: Cambridge University Press
- Seitenzahl: 554
- Erscheinungstermin: 4. August 2022
- Englisch
- Abmessung: 247mm x 172mm x 30mm
- Gewicht: 1196g
- ISBN-13: 9781108832984
- ISBN-10: 1108832989
- Artikelnr.: 63396959
Weizmann Institute of Science, Israel
Preface; 1. Machine learning and communications: an introduction Deniz Gündüz
Yonina Eldar
Andrea Goldsmith and H. Vincent Poor; Part I. Machine Learning for Wireless Networks: 2. Deep neural networks for joint source-channel coding David Burth Kurka
Milind Rao
Nariman Farsad
Deniz Gündüz and Andrea Goldsmith; 3. Neural network coding Litian Liu
Amit Solomon
Salman Salamatian
Derya Malak and Muriel Medard; 4. Channel coding via machine learning Hyeji Kim; 5. Channel estimation
feedback and signal detection Hengtao He
Hao Ye
Shi Jin and Geoffrey Y. Li; 6. Model-based machine learning for communications Nir Shlezinger
Nariman Farsad
Yonina Eldar and Andrea Goldsmith; 7. Constrained unsupervised learning for wireless network optimization Hoon Lee
Sang Hyun Lee and Tony Q. S. Quek; 8. Radio resource allocation in smart radio environments Alessio Zappone and Mérouane Debbah; 9. Reinforcement learning for physical layer communications Philippe Mary
Christophe Moy and Visa Koivunen; 10. Data-driven wireless networks: scalability and uncertainty Feng Yin
Yue Xu and Shuguang Cui; 11. Capacity estimation using machine learning Ziv Aharoni
Dor Zur
Ziv Goldfeld and Haim Permuter; Part II. Wireless Networks for Machine Learning: 12. Collaborative learning on wireless networks: an introductory overview Mehmet Emre Ozfatura
Deniz Gündüz and H. Vincent Poor; 13. Optimized federated learning in wireless networks with constrained resources Shiqiang Wang
Tiffany Tuor and Kin K. Leung; 14. Quantized federated learning Nir Shlezinger
Mingzhe Chen
Yonina Eldar
H. Vincent Poor and Shuguang Cui; 15. Over-the-air computation for distributed learning over wireless networks Mohammad Mohammadi Amiri and Deniz Gündüz; 16. Federated knowledge distillation Hyowoon Seo
Seungeun Oh
Jihong Park
Seong-Lyun Kim and Mehdi Bennis; 17. Differentially private wireless federated learning Dongzhu Liu
Amir Sonee
Stefano Rini and Osvaldo Simeone; 18. Timely wireless edge inference Sheng Zhou
Wenqi Shi
Xiufeng Huang and Zhisheng Niu.
Yonina Eldar
Andrea Goldsmith and H. Vincent Poor; Part I. Machine Learning for Wireless Networks: 2. Deep neural networks for joint source-channel coding David Burth Kurka
Milind Rao
Nariman Farsad
Deniz Gündüz and Andrea Goldsmith; 3. Neural network coding Litian Liu
Amit Solomon
Salman Salamatian
Derya Malak and Muriel Medard; 4. Channel coding via machine learning Hyeji Kim; 5. Channel estimation
feedback and signal detection Hengtao He
Hao Ye
Shi Jin and Geoffrey Y. Li; 6. Model-based machine learning for communications Nir Shlezinger
Nariman Farsad
Yonina Eldar and Andrea Goldsmith; 7. Constrained unsupervised learning for wireless network optimization Hoon Lee
Sang Hyun Lee and Tony Q. S. Quek; 8. Radio resource allocation in smart radio environments Alessio Zappone and Mérouane Debbah; 9. Reinforcement learning for physical layer communications Philippe Mary
Christophe Moy and Visa Koivunen; 10. Data-driven wireless networks: scalability and uncertainty Feng Yin
Yue Xu and Shuguang Cui; 11. Capacity estimation using machine learning Ziv Aharoni
Dor Zur
Ziv Goldfeld and Haim Permuter; Part II. Wireless Networks for Machine Learning: 12. Collaborative learning on wireless networks: an introductory overview Mehmet Emre Ozfatura
Deniz Gündüz and H. Vincent Poor; 13. Optimized federated learning in wireless networks with constrained resources Shiqiang Wang
Tiffany Tuor and Kin K. Leung; 14. Quantized federated learning Nir Shlezinger
Mingzhe Chen
Yonina Eldar
H. Vincent Poor and Shuguang Cui; 15. Over-the-air computation for distributed learning over wireless networks Mohammad Mohammadi Amiri and Deniz Gündüz; 16. Federated knowledge distillation Hyowoon Seo
Seungeun Oh
Jihong Park
Seong-Lyun Kim and Mehdi Bennis; 17. Differentially private wireless federated learning Dongzhu Liu
Amir Sonee
Stefano Rini and Osvaldo Simeone; 18. Timely wireless edge inference Sheng Zhou
Wenqi Shi
Xiufeng Huang and Zhisheng Niu.
Preface; 1. Machine learning and communications: an introduction Deniz Gündüz
Yonina Eldar
Andrea Goldsmith and H. Vincent Poor; Part I. Machine Learning for Wireless Networks: 2. Deep neural networks for joint source-channel coding David Burth Kurka
Milind Rao
Nariman Farsad
Deniz Gündüz and Andrea Goldsmith; 3. Neural network coding Litian Liu
Amit Solomon
Salman Salamatian
Derya Malak and Muriel Medard; 4. Channel coding via machine learning Hyeji Kim; 5. Channel estimation
feedback and signal detection Hengtao He
Hao Ye
Shi Jin and Geoffrey Y. Li; 6. Model-based machine learning for communications Nir Shlezinger
Nariman Farsad
Yonina Eldar and Andrea Goldsmith; 7. Constrained unsupervised learning for wireless network optimization Hoon Lee
Sang Hyun Lee and Tony Q. S. Quek; 8. Radio resource allocation in smart radio environments Alessio Zappone and Mérouane Debbah; 9. Reinforcement learning for physical layer communications Philippe Mary
Christophe Moy and Visa Koivunen; 10. Data-driven wireless networks: scalability and uncertainty Feng Yin
Yue Xu and Shuguang Cui; 11. Capacity estimation using machine learning Ziv Aharoni
Dor Zur
Ziv Goldfeld and Haim Permuter; Part II. Wireless Networks for Machine Learning: 12. Collaborative learning on wireless networks: an introductory overview Mehmet Emre Ozfatura
Deniz Gündüz and H. Vincent Poor; 13. Optimized federated learning in wireless networks with constrained resources Shiqiang Wang
Tiffany Tuor and Kin K. Leung; 14. Quantized federated learning Nir Shlezinger
Mingzhe Chen
Yonina Eldar
H. Vincent Poor and Shuguang Cui; 15. Over-the-air computation for distributed learning over wireless networks Mohammad Mohammadi Amiri and Deniz Gündüz; 16. Federated knowledge distillation Hyowoon Seo
Seungeun Oh
Jihong Park
Seong-Lyun Kim and Mehdi Bennis; 17. Differentially private wireless federated learning Dongzhu Liu
Amir Sonee
Stefano Rini and Osvaldo Simeone; 18. Timely wireless edge inference Sheng Zhou
Wenqi Shi
Xiufeng Huang and Zhisheng Niu.
Yonina Eldar
Andrea Goldsmith and H. Vincent Poor; Part I. Machine Learning for Wireless Networks: 2. Deep neural networks for joint source-channel coding David Burth Kurka
Milind Rao
Nariman Farsad
Deniz Gündüz and Andrea Goldsmith; 3. Neural network coding Litian Liu
Amit Solomon
Salman Salamatian
Derya Malak and Muriel Medard; 4. Channel coding via machine learning Hyeji Kim; 5. Channel estimation
feedback and signal detection Hengtao He
Hao Ye
Shi Jin and Geoffrey Y. Li; 6. Model-based machine learning for communications Nir Shlezinger
Nariman Farsad
Yonina Eldar and Andrea Goldsmith; 7. Constrained unsupervised learning for wireless network optimization Hoon Lee
Sang Hyun Lee and Tony Q. S. Quek; 8. Radio resource allocation in smart radio environments Alessio Zappone and Mérouane Debbah; 9. Reinforcement learning for physical layer communications Philippe Mary
Christophe Moy and Visa Koivunen; 10. Data-driven wireless networks: scalability and uncertainty Feng Yin
Yue Xu and Shuguang Cui; 11. Capacity estimation using machine learning Ziv Aharoni
Dor Zur
Ziv Goldfeld and Haim Permuter; Part II. Wireless Networks for Machine Learning: 12. Collaborative learning on wireless networks: an introductory overview Mehmet Emre Ozfatura
Deniz Gündüz and H. Vincent Poor; 13. Optimized federated learning in wireless networks with constrained resources Shiqiang Wang
Tiffany Tuor and Kin K. Leung; 14. Quantized federated learning Nir Shlezinger
Mingzhe Chen
Yonina Eldar
H. Vincent Poor and Shuguang Cui; 15. Over-the-air computation for distributed learning over wireless networks Mohammad Mohammadi Amiri and Deniz Gündüz; 16. Federated knowledge distillation Hyowoon Seo
Seungeun Oh
Jihong Park
Seong-Lyun Kim and Mehdi Bennis; 17. Differentially private wireless federated learning Dongzhu Liu
Amir Sonee
Stefano Rini and Osvaldo Simeone; 18. Timely wireless edge inference Sheng Zhou
Wenqi Shi
Xiufeng Huang and Zhisheng Niu.