Machine Learning Applications
From Computer Vision to Robotics
Herausgeber: Chatterjee, Indranath; Zalte, Sheetal
Machine Learning Applications
From Computer Vision to Robotics
Herausgeber: Chatterjee, Indranath; Zalte, Sheetal
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Practical resource on the importance of Machine Learning and Deep Learning applications in various technologies and real-world situations Machine Learning Applications discusses methodological advancements of machine learning and deep learning, presents applications in image processing, including face and vehicle detection, image classification, object detection, image segmentation, and delivers real-world applications in healthcare to identify diseases and diagnosis, such as creating smart health records and medical imaging diagnosis, and provides real-world examples, case studies, use cases,…mehr
- Daniel MinoliAI Applications to Communications and Information Technologies142,99 €
- Kelvin K L WongCybernetical Intelligence142,99 €
- Societal Responsibility of Artificial Intelligence192,99 €
- Green Machine Learning Protocols for Future Communication Networks160,99 €
- Realizing the Metaverse153,99 €
- Martí BoadaBattery-Less Nfc Sensors for the Internet of Things179,99 €
- Machine Learning for Industrial Applications209,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 240
- Erscheinungstermin: 27. Dezember 2023
- Englisch
- Abmessung: 235mm x 157mm x 17mm
- Gewicht: 503g
- ISBN-13: 9781394173327
- ISBN-10: 1394173326
- Artikelnr.: 68503568
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- Seitenzahl: 240
- Erscheinungstermin: 27. Dezember 2023
- Englisch
- Abmessung: 235mm x 157mm x 17mm
- Gewicht: 503g
- ISBN-13: 9781394173327
- ISBN-10: 1394173326
- Artikelnr.: 68503568
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Preface xv
1 Statistical Similarity in Machine Learning 1
Dmitriy Klyushin
1.1 Introduction 1
1.2 Featureless Machine Learning 2
1.3 Two-Sample Homogeneity Measure 3
1.4 The Klyushin-Petunin Test 3
1.5 Experiments and Applications 4
1.6 Summary 6
References 6
2 Development of ML-Based Methodologies for Adaptive Intelligent E-Learning
Systems and Time Series Analysis Techniques 11
Indra Kumari, Indranath Chatterjee, and Minho Lee
2.1 Introduction 11
2.1.1 Machine Learning 12
2.1.2 Types of Machine Learning 12
2.1.3 Learning Methods 13
2.1.4 E-Learning with Machine Learning 14
2.1.5 Need for Machine Learning 15
2.2 Methodological Advancement of Machine Learning 16
2.2.1 Automatic Learner Profiling Agent 16
2.2.2 Learning Materials' Content Indexing Agent 17
2.2.3 Adaptive Learning 17
2.2.4 Proposed Research 18
2.2.5 Multi-Perspective Learning 18
2.2.6 Machine Learning Recommender Agent for Customization 19
2.2.6.1 E-Learning 19
2.2.7 Data Creation 19
2.2.8 Naïve Bayes model 19
2.2.9 K-Means Model 20
2.3 Machine Learning on Time Series Analysis 21
2.3.1 Time Series Representation 22
2.3.2 Time Series Classification 24
2.3.3 Time Series Forecasting 25
2.4 Conclusion 26
Acknowledgment 28
Conflict of Interest 28
References 28
3 Time-Series Forecasting for Stock Market Using Convolutional Neural
Network 31
Partha Pratim Deb, Diptendu Bhattacharya, Indranath Chatterjee, and Sheetal
Zalte
3.1 Introduction 31
3.2 Materials 33
3.3 Methodology 33
3.3.1 The Convolutional Neural Network 34
3.4 Accuracy Measurement 35
3.5 Result and Discussion 35
3.6 Conclusion 47
Acknowledgement 47
References 48
4 Comparative Study for Applicability of Color Histograms for CBIR Used for
Crop Leaf Disease Detection 49
Jayamala Kumar Patil, Sampada Abhijit Dhole, Vinay Sampatrao Mandlik, and
Sachin B. Jadhav
4.1 Introduction 49
4.2 Literature Review 50
4.3 Methodology 51
4.3.1 Color Features 52
4.3.1.1 RGB Color Model/Space 53
4.3.1.2 HSV Color Space 53
4.3.1.3 YCbCr Color Space 54
4.3.1.4 Color Histogram 54
4.3.2 Database 54
4.3.3 Parameters for Performance Analysis 57
4.3.4 Experimental Procedure for CBIR Using Color Histogram for Detection
of Disease 58
4.4 Results and Discussions 60
4.4.1 Results of CBIR Using Color Histogram for Detection of Soybean
Alfalfa Mosaic Virus Disease 60
4.4.2 Results of CBIR Using Color Histogram for Detection of Soybean
Septoria Brown Spot (SBS) Disease 62
4.4.3 Results of CBIR Using Color Histogram for Detection of Soybean
Healthy Leaf 63
4.5 Conclusion 63
References 65
Biographies of Authors 67
5 Stock Index Forecasting Using RNN-Long Short-Term Memory 69
Partha Pratim Deb, Diptendu Bhattacharya, and Sheetal Zalte
5.1 Introduction 69
5.2 Materials 71
5.3 Methodology 71
5.3.1 RNN 71
5.3.2 LSTM 72
5.4 Result and Discussion 73
5.4.1 Comparison Table for the Method TAIEX 80
5.4.2 Comparison Table for Method BSE-SENSEX 80
5.4.3 Comparison Table for Method KOSPI 80
5.5 Conclusion 81
Acknowledgement 83
References 84
6 Study and Analysis of Machine Learning Models for Detection of Phishing
URLs 85
Shreyas Desai, Sahil Salunkhe, Rashmi Deshmukh, and Sheetal Zalte
6.1 Introduction 85
6.2 Literature Review 86
6.3 Methodology 87
6.3.1 Proposed Work 87
6.3.2 Traditional Methods 87
6.3.2.1 Blacklist Method 88
6.3.2.2 Heuristic-Based Model 88
6.3.2.3 Visual Similarity 89
6.3.2.4 Machine Learning-Based Approach 89
6.4 Results and Experimentation 89
6.4.1 Dataset Creation 89
6.4.2 Feature Extraction 90
6.4.3 Training Data and Comparison 90
6.4.3.1 XGB (eXtreme Gradient Boosting) 90
6.4.3.2 Logistic Regression (LR) 90
6.4.3.3 RFC (Random Forest Classifier) 91
6.4.3.4 Decision Tree 91
6.4.3.5 SVM (Support Vector Machines) 91
6.4.3.6 KNN (K-Nearest Neighbors) 91
6.5 Model-Metric Analysis 91
6.6 Conclusion 94
References 94
7 Real-World Applications of BC Technology in Internet of Things 97
Pardeep Singh, Ajay Kumar, and Mayank Chopra
7.1 Introduction 97
7.1.1 Relevance and Benefits of Blockchain Technology Applications 98
7.2 Review of Existing Study 100
7.3 Background of Blockchain 101
7.3.1 Blockchain Stakeholders 101
7.3.2 What is Bitcoin? 102
7.3.3 Emergence of Bitcoin 102
7.3.4 Working of Bitcoin 102
7.3.5 Risk in Bitcoin 103
7.3.6 Legal Issues in Bitcoin 103
7.4 Blockchain Technology in Internet of Things 104
7.4.1 Need of Integrating Blockchain with IoT 104
7.4.1.1 IoT Data Traceability and Reliability 105
7.4.1.2 Superior Interoperability 105
7.4.1.3 Increased Security 105
7.4.1.4 IoT System Autonomous Interactions 106
7.4.2 Hyperledger 106
7.4.3 Ethereum 107
7.4.4 Iota 107
7.5 Challenges and Concerns in Integrating Blockchain with the IoT 108
7.5.1 Blockchain Challenges and Concern 108
7.5.1.1 Scalability 108
7.5.1.2 Privacy Infringement 109
7.5.2 Privacy and Security issues with Internet of Things 109
7.6 Blockchain Applications for the Internet of Things (BIoT Applications)
110
7.6.1 BIoT Applications for Smart Agriculture 111
7.6.2 Blockchain for Smart Agriculture 111
7.6.3 Intelligent Irrigation Driven by IoT 111
7.7 Application of BIoT in Healthcare 112
7.7.1 Interoperability 113
7.7.2 Improved Analytics and Data Storage 113
7.7.3 Increased Security 113
7.7.4 Immutability 114
7.7.5 Quicker Services 114
7.7.5.1 Transparency 114
7.8 Application of BIoT in Voting 115
7.9 Application of BIoT in Supply Chain 116
7.10 Summary 116
References 117
8 Advanced Persistent Threat: Korean Cyber Security Knack Model Impost and
Applicability 123
Indra Kumari and Minho Lee
8.1 Introduction 123
8.2 Background Study 124
8.3 Literature Review 126
8.4 Research Questions 131
8.5 Research Objectives 131
8.6 Research Hypothesis 131
8.7 Phases of APT Outbreak 131
8.7.1 Gain Access 132
8.7.2 Establish Foothold 132
8.7.3 Deepen Access 133
8.7.4 Move Laterally 133
8.7.5 Look, Learn, and Remain 133
8.8 Research Methodology 134
8.8.1 South Korea Cyber Security Initiatives and Applicability 135
8.8.2 Korea's Cyber-Security Program Proposals 137
8.8.2.1 Modernized Multi-Negotiator Retreat Arrangement 137
8.8.2.2 Headway of the Realms Exemplary 137
8.8.2.3 Scrutiny of Over apt in Cyber Retreat 137
8.8.2.4 Indiscriminate Inconsistency Revealing 138
8.9 A Deception Exemplary of Counter-Offensive 138
8.10 Conclusion 141
Acknowledgment 142
Conflict of Interest 142
References 142
9 Integration of Blockchain Technology and Internet of Things: Challenges
and Solutions 145
Aman Kumar Dhiman and Ajay Kumar
9.1 Introduction 145
9.2 Overview of Blockchain-IoT Integration 146
9.3 How Blockchain-IoT Work Together 146
9.3.1 Network in IoT Devices 147
9.3.2 Network in IoT with Blockchain Technology 148
9.3.3 Data Flow in IoT Devices 148
9.3.4 Data Flow in IoT with Blockchain 149
9.3.5 The Role of Blockchain in IoT 149
9.3.6 The Role of IoT in Blockchain 150
9.4 Blockchain-IoT Applications 151
9.5 Related Studies on Integration of IoT and Blockchain Applications 153
9.6 Challenges of Blockchain-IoT Integration 155
9.7 Solutions of Blockchain-IoT Integration 155
9.8 Future Directions for Blockchain-IoT Integration 156
9.9 Conclusion 157
References 157
10 Machine Learning Techniques for SWOT Analysis of Online Education System
161
Priyanka P. Shinde, Varsha P. Desai, T. Ganesh Kumar, Kavita S. Oza, and
Sheetal Zalte
10.1 Introduction 161
10.2 Motivation 162
10.3 Objectives 163
10.4 Methodology 163
10.5 Dataset Preparation 164
10.6 Data Visualization and Analysis 170
10.6.1 Observations 171
10.7 Machine Learning Techniques Implementation 178
10.7.1 K-Nearest Neighbors 178
10.7.2 Decision Tree 178
10.7.3 Random Forest 178
10.7.4 Support Vector Machine 179
10.7.5 Logistic Regression 179
10.8 Conclusion 179
References 180
11 Crop Yield and Soil Moisture Prediction Using Machine Learning
Algorithms 183
Debarghya Acharjee, Nibedita Mallik, Dipa Das, Mousumi Aktar, and Parijata
Majumdar
11.1 Introduction 183
11.2 Literature Review 185
11.3 Methodology 187
11.4 Result and Discussion 190
11.5 Conclusion 191
References 193
12 Multirate Signal Processing in WSN for Channel Capacity and Energy
Efficiency Using Machine Learning 195
Prashant R. Dike, T. S. Vishwanath, V. M. Rohokale, and D. S. Mantri
12.1 Introduction 195
12.2 Energy Management in WSN 197
12.3 Different Strategies to Increase Energy Efficiency 197
12.4 Algorithm Development 198
12.5 Results 202
12.6 Summary 203
References 203
13 Introduction to Mechanical Design of AI-Based Robotic System 207
Mohammad Zubair
13.1 Introduction 207
13.2 Mechanisms in a Robot 209
13.2.1 Serial Manipulator 209
13.2.2 Parallel Manipulator 209
13.3 Kinematics 212
13.3.1 Degree of Freedom 214
13.3.2 Position and Orientation in a Robotic System 215
13.4 Conclusion 216
Acknowledgment 217
Conflict of Interest 217
References 217
Index 219
Preface xv
1 Statistical Similarity in Machine Learning 1
Dmitriy Klyushin
1.1 Introduction 1
1.2 Featureless Machine Learning 2
1.3 Two-Sample Homogeneity Measure 3
1.4 The Klyushin-Petunin Test 3
1.5 Experiments and Applications 4
1.6 Summary 6
References 6
2 Development of ML-Based Methodologies for Adaptive Intelligent E-Learning
Systems and Time Series Analysis Techniques 11
Indra Kumari, Indranath Chatterjee, and Minho Lee
2.1 Introduction 11
2.1.1 Machine Learning 12
2.1.2 Types of Machine Learning 12
2.1.3 Learning Methods 13
2.1.4 E-Learning with Machine Learning 14
2.1.5 Need for Machine Learning 15
2.2 Methodological Advancement of Machine Learning 16
2.2.1 Automatic Learner Profiling Agent 16
2.2.2 Learning Materials' Content Indexing Agent 17
2.2.3 Adaptive Learning 17
2.2.4 Proposed Research 18
2.2.5 Multi-Perspective Learning 18
2.2.6 Machine Learning Recommender Agent for Customization 19
2.2.6.1 E-Learning 19
2.2.7 Data Creation 19
2.2.8 Naïve Bayes model 19
2.2.9 K-Means Model 20
2.3 Machine Learning on Time Series Analysis 21
2.3.1 Time Series Representation 22
2.3.2 Time Series Classification 24
2.3.3 Time Series Forecasting 25
2.4 Conclusion 26
Acknowledgment 28
Conflict of Interest 28
References 28
3 Time-Series Forecasting for Stock Market Using Convolutional Neural
Network 31
Partha Pratim Deb, Diptendu Bhattacharya, Indranath Chatterjee, and Sheetal
Zalte
3.1 Introduction 31
3.2 Materials 33
3.3 Methodology 33
3.3.1 The Convolutional Neural Network 34
3.4 Accuracy Measurement 35
3.5 Result and Discussion 35
3.6 Conclusion 47
Acknowledgement 47
References 48
4 Comparative Study for Applicability of Color Histograms for CBIR Used for
Crop Leaf Disease Detection 49
Jayamala Kumar Patil, Sampada Abhijit Dhole, Vinay Sampatrao Mandlik, and
Sachin B. Jadhav
4.1 Introduction 49
4.2 Literature Review 50
4.3 Methodology 51
4.3.1 Color Features 52
4.3.1.1 RGB Color Model/Space 53
4.3.1.2 HSV Color Space 53
4.3.1.3 YCbCr Color Space 54
4.3.1.4 Color Histogram 54
4.3.2 Database 54
4.3.3 Parameters for Performance Analysis 57
4.3.4 Experimental Procedure for CBIR Using Color Histogram for Detection
of Disease 58
4.4 Results and Discussions 60
4.4.1 Results of CBIR Using Color Histogram for Detection of Soybean
Alfalfa Mosaic Virus Disease 60
4.4.2 Results of CBIR Using Color Histogram for Detection of Soybean
Septoria Brown Spot (SBS) Disease 62
4.4.3 Results of CBIR Using Color Histogram for Detection of Soybean
Healthy Leaf 63
4.5 Conclusion 63
References 65
Biographies of Authors 67
5 Stock Index Forecasting Using RNN-Long Short-Term Memory 69
Partha Pratim Deb, Diptendu Bhattacharya, and Sheetal Zalte
5.1 Introduction 69
5.2 Materials 71
5.3 Methodology 71
5.3.1 RNN 71
5.3.2 LSTM 72
5.4 Result and Discussion 73
5.4.1 Comparison Table for the Method TAIEX 80
5.4.2 Comparison Table for Method BSE-SENSEX 80
5.4.3 Comparison Table for Method KOSPI 80
5.5 Conclusion 81
Acknowledgement 83
References 84
6 Study and Analysis of Machine Learning Models for Detection of Phishing
URLs 85
Shreyas Desai, Sahil Salunkhe, Rashmi Deshmukh, and Sheetal Zalte
6.1 Introduction 85
6.2 Literature Review 86
6.3 Methodology 87
6.3.1 Proposed Work 87
6.3.2 Traditional Methods 87
6.3.2.1 Blacklist Method 88
6.3.2.2 Heuristic-Based Model 88
6.3.2.3 Visual Similarity 89
6.3.2.4 Machine Learning-Based Approach 89
6.4 Results and Experimentation 89
6.4.1 Dataset Creation 89
6.4.2 Feature Extraction 90
6.4.3 Training Data and Comparison 90
6.4.3.1 XGB (eXtreme Gradient Boosting) 90
6.4.3.2 Logistic Regression (LR) 90
6.4.3.3 RFC (Random Forest Classifier) 91
6.4.3.4 Decision Tree 91
6.4.3.5 SVM (Support Vector Machines) 91
6.4.3.6 KNN (K-Nearest Neighbors) 91
6.5 Model-Metric Analysis 91
6.6 Conclusion 94
References 94
7 Real-World Applications of BC Technology in Internet of Things 97
Pardeep Singh, Ajay Kumar, and Mayank Chopra
7.1 Introduction 97
7.1.1 Relevance and Benefits of Blockchain Technology Applications 98
7.2 Review of Existing Study 100
7.3 Background of Blockchain 101
7.3.1 Blockchain Stakeholders 101
7.3.2 What is Bitcoin? 102
7.3.3 Emergence of Bitcoin 102
7.3.4 Working of Bitcoin 102
7.3.5 Risk in Bitcoin 103
7.3.6 Legal Issues in Bitcoin 103
7.4 Blockchain Technology in Internet of Things 104
7.4.1 Need of Integrating Blockchain with IoT 104
7.4.1.1 IoT Data Traceability and Reliability 105
7.4.1.2 Superior Interoperability 105
7.4.1.3 Increased Security 105
7.4.1.4 IoT System Autonomous Interactions 106
7.4.2 Hyperledger 106
7.4.3 Ethereum 107
7.4.4 Iota 107
7.5 Challenges and Concerns in Integrating Blockchain with the IoT 108
7.5.1 Blockchain Challenges and Concern 108
7.5.1.1 Scalability 108
7.5.1.2 Privacy Infringement 109
7.5.2 Privacy and Security issues with Internet of Things 109
7.6 Blockchain Applications for the Internet of Things (BIoT Applications)
110
7.6.1 BIoT Applications for Smart Agriculture 111
7.6.2 Blockchain for Smart Agriculture 111
7.6.3 Intelligent Irrigation Driven by IoT 111
7.7 Application of BIoT in Healthcare 112
7.7.1 Interoperability 113
7.7.2 Improved Analytics and Data Storage 113
7.7.3 Increased Security 113
7.7.4 Immutability 114
7.7.5 Quicker Services 114
7.7.5.1 Transparency 114
7.8 Application of BIoT in Voting 115
7.9 Application of BIoT in Supply Chain 116
7.10 Summary 116
References 117
8 Advanced Persistent Threat: Korean Cyber Security Knack Model Impost and
Applicability 123
Indra Kumari and Minho Lee
8.1 Introduction 123
8.2 Background Study 124
8.3 Literature Review 126
8.4 Research Questions 131
8.5 Research Objectives 131
8.6 Research Hypothesis 131
8.7 Phases of APT Outbreak 131
8.7.1 Gain Access 132
8.7.2 Establish Foothold 132
8.7.3 Deepen Access 133
8.7.4 Move Laterally 133
8.7.5 Look, Learn, and Remain 133
8.8 Research Methodology 134
8.8.1 South Korea Cyber Security Initiatives and Applicability 135
8.8.2 Korea's Cyber-Security Program Proposals 137
8.8.2.1 Modernized Multi-Negotiator Retreat Arrangement 137
8.8.2.2 Headway of the Realms Exemplary 137
8.8.2.3 Scrutiny of Over apt in Cyber Retreat 137
8.8.2.4 Indiscriminate Inconsistency Revealing 138
8.9 A Deception Exemplary of Counter-Offensive 138
8.10 Conclusion 141
Acknowledgment 142
Conflict of Interest 142
References 142
9 Integration of Blockchain Technology and Internet of Things: Challenges
and Solutions 145
Aman Kumar Dhiman and Ajay Kumar
9.1 Introduction 145
9.2 Overview of Blockchain-IoT Integration 146
9.3 How Blockchain-IoT Work Together 146
9.3.1 Network in IoT Devices 147
9.3.2 Network in IoT with Blockchain Technology 148
9.3.3 Data Flow in IoT Devices 148
9.3.4 Data Flow in IoT with Blockchain 149
9.3.5 The Role of Blockchain in IoT 149
9.3.6 The Role of IoT in Blockchain 150
9.4 Blockchain-IoT Applications 151
9.5 Related Studies on Integration of IoT and Blockchain Applications 153
9.6 Challenges of Blockchain-IoT Integration 155
9.7 Solutions of Blockchain-IoT Integration 155
9.8 Future Directions for Blockchain-IoT Integration 156
9.9 Conclusion 157
References 157
10 Machine Learning Techniques for SWOT Analysis of Online Education System
161
Priyanka P. Shinde, Varsha P. Desai, T. Ganesh Kumar, Kavita S. Oza, and
Sheetal Zalte
10.1 Introduction 161
10.2 Motivation 162
10.3 Objectives 163
10.4 Methodology 163
10.5 Dataset Preparation 164
10.6 Data Visualization and Analysis 170
10.6.1 Observations 171
10.7 Machine Learning Techniques Implementation 178
10.7.1 K-Nearest Neighbors 178
10.7.2 Decision Tree 178
10.7.3 Random Forest 178
10.7.4 Support Vector Machine 179
10.7.5 Logistic Regression 179
10.8 Conclusion 179
References 180
11 Crop Yield and Soil Moisture Prediction Using Machine Learning
Algorithms 183
Debarghya Acharjee, Nibedita Mallik, Dipa Das, Mousumi Aktar, and Parijata
Majumdar
11.1 Introduction 183
11.2 Literature Review 185
11.3 Methodology 187
11.4 Result and Discussion 190
11.5 Conclusion 191
References 193
12 Multirate Signal Processing in WSN for Channel Capacity and Energy
Efficiency Using Machine Learning 195
Prashant R. Dike, T. S. Vishwanath, V. M. Rohokale, and D. S. Mantri
12.1 Introduction 195
12.2 Energy Management in WSN 197
12.3 Different Strategies to Increase Energy Efficiency 197
12.4 Algorithm Development 198
12.5 Results 202
12.6 Summary 203
References 203
13 Introduction to Mechanical Design of AI-Based Robotic System 207
Mohammad Zubair
13.1 Introduction 207
13.2 Mechanisms in a Robot 209
13.2.1 Serial Manipulator 209
13.2.2 Parallel Manipulator 209
13.3 Kinematics 212
13.3.1 Degree of Freedom 214
13.3.2 Position and Orientation in a Robotic System 215
13.4 Conclusion 216
Acknowledgment 217
Conflict of Interest 217
References 217
Index 219