Machine Learning, Optimization, and Data Science
8th International Conference, LOD 2022, Certosa di Pontignano, Italy, September 18¿22, 2022, Revised Selected Papers, Part II
Herausgegeben:Nicosia, Giuseppe; Ojha, Varun; La Malfa, Emanuele; La Malfa, Gabriele; Pardalos, Panos; Di Fatta, Giuseppe; Giuffrida, Giovanni; Umeton, Renato
Machine Learning, Optimization, and Data Science
8th International Conference, LOD 2022, Certosa di Pontignano, Italy, September 18¿22, 2022, Revised Selected Papers, Part II
Herausgegeben:Nicosia, Giuseppe; Ojha, Varun; La Malfa, Emanuele; La Malfa, Gabriele; Pardalos, Panos; Di Fatta, Giuseppe; Giuffrida, Giovanni; Umeton, Renato
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This two-volume set, LNCS 13810 and 13811, constitutes the refereed proceedings of the 8th International Conference on Machine Learning, Optimization, and Data Science, LOD 2022, together with the papers of the Second Symposium on Artificial Intelligence and Neuroscience, ACAIN 2022. The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational…mehr
Andere Kunden interessierten sich auch für
- Machine Learning, Optimization, and Data Science72,99 €
- Machine Learning, Optimization, and Data Science60,99 €
- Machine Learning, Optimization, and Data Science55,99 €
- Machine Learning, Optimization, and Data Science88,99 €
- Machine Learning, Optimization, and Data Science74,99 €
- Machine Learning, Optimization, and Data Science66,99 €
- Machine Learning, Optimization, and Data Science37,99 €
-
-
-
This two-volume set, LNCS 13810 and 13811, constitutes the refereed proceedings of the 8th International Conference on Machine Learning, Optimization, and Data Science, LOD 2022, together with the papers of the Second Symposium on Artificial Intelligence and Neuroscience, ACAIN 2022.
The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science 13811
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-25890-9
- 1st ed. 2023
- Seitenzahl: 608
- Erscheinungstermin: 10. März 2023
- Englisch
- Abmessung: 235mm x 155mm x 33mm
- Gewicht: 908g
- ISBN-13: 9783031258909
- ISBN-10: 3031258908
- Artikelnr.: 67057912
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Computer Science 13811
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-25890-9
- 1st ed. 2023
- Seitenzahl: 608
- Erscheinungstermin: 10. März 2023
- Englisch
- Abmessung: 235mm x 155mm x 33mm
- Gewicht: 908g
- ISBN-13: 9783031258909
- ISBN-10: 3031258908
- Artikelnr.: 67057912
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Explainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting.- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms.- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling.- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial.- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models.- Deep Learning.- Machine Learning.- Reinforcement Learning.- Neural Networks.- Deep Reinforcement Learning.- Optimization.- Global Optimization.- Multi-Objective Optimization.- Computational Optimization.- Data Science.- Big Data.- Data Analytics.- Artificial Intelligence.- Detection of Morality in Tweets based on the Moral Foundation Theory.- Matrix completion for the prediction of yearly country and industry-level CO2 emissions.- A Benchmark for Real-Time Anomaly Detection Algorithms Applied in Industry 4.0.- A Matrix Factorization-based Drug-virus Link Prediction Method for SARS CoV.- Drug Prioritization.- Hyperbolic Graph Codebooks.- A Kernel-Based Multilayer Perceptron Framework to Identify Pathways Related to Cancer Stages.- Loss Function with Memory for Trustworthiness Threshold Learning: Case of Face and Facial Expression Recognition.- Machine learning approaches for predicting Crystal Systems: a brief review and a case study.- LS-PON: a Prediction-based Local Search for Neural Architecture Search.- Local optimisation of Nystrm samples through stochastic gradient descent.- Explainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting.- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms.- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling.- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial.- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models.- Deep Learning.- Machine Learning.- Reinforcement Learning.- Neural Networks.- Deep Reinforcement Learning.- Optimization.- Global Optimization.- Multi-Objective Optimization.- Computational Optimization.- Data Science.- Big Data.- Data Analytics.- Artificial Intelligence.
Explainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting.- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms.- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling.- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial.- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models.- Deep Learning.- Machine Learning.- Reinforcement Learning.- Neural Networks.- Deep Reinforcement Learning.- Optimization.- Global Optimization.- Multi-Objective Optimization.- Computational Optimization.- Data Science.- Big Data.- Data Analytics.- Artificial Intelligence.- Detection of Morality in Tweets based on the Moral Foundation Theory.- Matrix completion for the prediction of yearly country and industry-level CO2 emissions.- A Benchmark for Real-Time Anomaly Detection Algorithms Applied in Industry 4.0.- A Matrix Factorization-based Drug-virus Link Prediction Method for SARS CoV.- Drug Prioritization.- Hyperbolic Graph Codebooks.- A Kernel-Based Multilayer Perceptron Framework to Identify Pathways Related to Cancer Stages.- Loss Function with Memory for Trustworthiness Threshold Learning: Case of Face and Facial Expression Recognition.- Machine learning approaches for predicting Crystal Systems: a brief review and a case study.- LS-PON: a Prediction-based Local Search for Neural Architecture Search.- Local optimisation of Nystrm samples through stochastic gradient descent.- Explainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting.- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms.- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling.- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial.- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models.- Deep Learning.- Machine Learning.- Reinforcement Learning.- Neural Networks.- Deep Reinforcement Learning.- Optimization.- Global Optimization.- Multi-Objective Optimization.- Computational Optimization.- Data Science.- Big Data.- Data Analytics.- Artificial Intelligence.