212,99 €
inkl. MwSt.
Versandkostenfrei*
Sofort lieferbar
payback
106 °P sammeln
  • Gebundenes Buch

An in-depth analysis of machine vibration in rotating machinery Whether it's a compressor on an offshore platform, a turbocharger in a truck or automobile, or a turbine in a jet airplane, rotating machinery is the driving force behind almost anything that produces or uses energy. Counted on daily to perform any number of vital societal tasks, turbomachinery uses high rotational speeds to produce amazing amounts of power efficiently. The key to increasing its longevity, efficiency, and reliability lies in the examination of rotor vibration and bearing dynamics, a field called rotordynamics. A…mehr

Produktbeschreibung
An in-depth analysis of machine vibration in rotating machinery Whether it's a compressor on an offshore platform, a turbocharger in a truck or automobile, or a turbine in a jet airplane, rotating machinery is the driving force behind almost anything that produces or uses energy. Counted on daily to perform any number of vital societal tasks, turbomachinery uses high rotational speeds to produce amazing amounts of power efficiently. The key to increasing its longevity, efficiency, and reliability lies in the examination of rotor vibration and bearing dynamics, a field called rotordynamics. A valuable textbook for beginners as well as a handy reference for experts, Machinery Vibration and Rotordynamics is teeming with rich technical detail and real-world examples geared toward the study of machine vibration. A logical progression of information covers essential fundamentals, in-depth case studies, and the latest analytical tools used for predicting and preventing damage in rotating machinery. Machinery Vibration and Rotordynamics: * Combines rotordynamics with the applications of machinery vibration in a single volume * Includes case studies of vibration problems in several different types of machines as well as computer simulation models used in industry * Contains fundamental physical phenomena, mathematical and computational aspects, practical hardware considerations, troubleshooting, and instrumentation and measurement techniques For students interested in entering this highly specialized field of study, as well as professionals seeking to expand their knowledge base, Machinery Vibration and Rotordynamics will serve as the one book they will come to rely upon consistently.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. JOHN M. VANCE was professor of mechanical engineering at Texas A&M University, retiring in 2007. He received his PhD (1967) degree from The University of Texas at Austin. His book Rotordynamics of Turbomachinery (Wiley) has sold more than 3,000 copies and is used by turbomachinery engineers around the world. He is an inventor on several patents relating to rotating machinery and vibration reduction. His patented TAMSEAL has been retrofitted to solve vibration problems in a number of high-pressure industrial compressors. He is an ASME Fellow and a registered professional engineer in the state of Texas. Dr. FOUAD Y. ZEIDAN is the President of KMC, Inc., and Bearings Plus, Inc., two companies specializing in the supply of high-performance bearings, flexible couplings, and seals. Dr. Zeidan holds nine U.S. patents for integral squeeze film dampers and high-performance journal and thrust bearings. He has published more than thirty technical papers and articles on various turbomachinery topics and has been lecturing at the Annual Machinery Vibrations and Rotordynamics short course since 1991. Dr. Zeidan holds a BS, MS, and PhD degrees in mechanical engineering from Texas A&M University. BRIAN T. MURPHY, PhD, PE, is a senior research scientist with the Center for Electromechanics at The University of Texas at Austin. He is also president of RMA, Inc., which develops and markets the Xlrotor suite of rotordynamic analysis software used worldwide by industry and academia. Dr. Murphy is the creator of the polynomial transfer matrix method, which is the fastest known method of performing rotordynamic calculations. He has authored numerous technical papers on rotordynamics and machinery vibration, and is also caretaker of the Web site www.rotordynamics.org.