High Quality Content by WIKIPEDIA articles! Magnetic confinement fusion is an approach to generating fusion energy that uses magnetic fields to confine the fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, the other being inertial confinement fusion. The magnetic approach is more highly developed and is usually considered more promising for energy production. A 500-MW heat generating fusion plant using tokamak magnetic confinement geometry is currently being built in France (see ITER). Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium. In order to overcome the electrostatic repulsion between them, the nuclei must have a temperature of several tens of millions of degrees, under which conditions they no longer form neutral atoms but exist in the plasma state. In addition, sufficient density and energy confinement are required, as specified by the Lawson criterion. Magnetic confinement fusion attempts to create the conditions needed for fusion energy production by using the electrical conductivity of the plasma to contain it with magnetic fields.