Hans Goedbloed, Rony Keppens, Stefaan Poedts
Magnetohydrodynamics of Laboratory and Astrophysical Plasmas
Hans Goedbloed, Rony Keppens, Stefaan Poedts
Magnetohydrodynamics of Laboratory and Astrophysical Plasmas
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An introduction to magnetohydrodynamics combining theory with advanced topics including the applications of plasma physics to thermonuclear fusion and plasma astrophysics.
Andere Kunden interessierten sich auch für
- Vinod KrishanAstrophysical Plasmas and Fluids42,99 €
- Vinod KrishanAstrophysical Plasmas and Fluids59,99 €
- Péter MészárosThe High Energy Universe79,99 €
- V. V. ZheleznyakovRadiation in Astrophysical Plasmas166,99 €
- M N HarakehGiant Resonances487,99 €
- V. V. ZheleznyakovRadiation in Astrophysical Plasmas166,99 €
- T William DonnellyFoundations of Nuclear and Particle Physics62,99 €
-
-
-
An introduction to magnetohydrodynamics combining theory with advanced topics including the applications of plasma physics to thermonuclear fusion and plasma astrophysics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- 2nd Revised edition
- Seitenzahl: 992
- Erscheinungstermin: 31. Januar 2019
- Englisch
- Abmessung: 251mm x 179mm x 53mm
- Gewicht: 2022g
- ISBN-13: 9781107123922
- ISBN-10: 1107123925
- Artikelnr.: 53485725
- Verlag: Cambridge University Press
- 2nd Revised edition
- Seitenzahl: 992
- Erscheinungstermin: 31. Januar 2019
- Englisch
- Abmessung: 251mm x 179mm x 53mm
- Gewicht: 2022g
- ISBN-13: 9781107123922
- ISBN-10: 1107123925
- Artikelnr.: 53485725
Hans Goedbloed is Advisor of the Dutch Institute for Fundamental Energy Research (DIFFER), and Professor Emeritus of Theoretical Plasma Physics at Utrecht University. He has been a visiting scientist at laboratories in the Soviet Union, the United States, Brazil and Europe. He has taught at Campinas, Rio de Janeiro, São Paulo, Massachusetts Institute of Technology, Katholieke Universiteit Leuven, Amsterdam Free University and Utrecht University. For many years he coordinated an interdisciplinary and largescale computational effort with the Dutch Science Organisation on 'Fast Changes in Complex Flows.'
Preface
Part I. Plasma Physics Preliminaries: 1. Introduction
2. Elements of plasma physics
3. 'Derivation' of the macroscopic equations
Part II. Basic Magnetohydrodynamics: 4. The MHD model
5. Waves and characteristics
6. Spectral theory
Part III. Standard Model Applications: 7. Waves and instabilities of inhomogeneous plasmas
8. Magnetic structures and dynamics of the solar system
9. Cylindrical plasmas
10. Initial value problem and wave damping
11. Resonant absorption and wave heating
Part IV. Flow and Dissipation: 12. Waves and instabilities of stationary plasmas
13. Shear flow and rotation
14. Resistive plasma dynamics
15. Computational linear MHD
Part V. Toroidal Geometry: 16. Static equilibrium of toroidal plasmas
17. Linear dynamics of static toroidal plasmas
18. Linear dynamics of toroidal plasmas with flow
Part VI. Nonlinear Dynamics: 19. Turbulence in incompressible magneto-fluids
20. Computational nonlinear MHD
21. Transonic MHD flows and shocks
22. Ideal MHD in special relativity
Appendices: A. Vectors and coordinates
B. Tables of physical quantities
References
Index.
Part I. Plasma Physics Preliminaries: 1. Introduction
2. Elements of plasma physics
3. 'Derivation' of the macroscopic equations
Part II. Basic Magnetohydrodynamics: 4. The MHD model
5. Waves and characteristics
6. Spectral theory
Part III. Standard Model Applications: 7. Waves and instabilities of inhomogeneous plasmas
8. Magnetic structures and dynamics of the solar system
9. Cylindrical plasmas
10. Initial value problem and wave damping
11. Resonant absorption and wave heating
Part IV. Flow and Dissipation: 12. Waves and instabilities of stationary plasmas
13. Shear flow and rotation
14. Resistive plasma dynamics
15. Computational linear MHD
Part V. Toroidal Geometry: 16. Static equilibrium of toroidal plasmas
17. Linear dynamics of static toroidal plasmas
18. Linear dynamics of toroidal plasmas with flow
Part VI. Nonlinear Dynamics: 19. Turbulence in incompressible magneto-fluids
20. Computational nonlinear MHD
21. Transonic MHD flows and shocks
22. Ideal MHD in special relativity
Appendices: A. Vectors and coordinates
B. Tables of physical quantities
References
Index.
Preface
Part I. Plasma Physics Preliminaries: 1. Introduction
2. Elements of plasma physics
3. 'Derivation' of the macroscopic equations
Part II. Basic Magnetohydrodynamics: 4. The MHD model
5. Waves and characteristics
6. Spectral theory
Part III. Standard Model Applications: 7. Waves and instabilities of inhomogeneous plasmas
8. Magnetic structures and dynamics of the solar system
9. Cylindrical plasmas
10. Initial value problem and wave damping
11. Resonant absorption and wave heating
Part IV. Flow and Dissipation: 12. Waves and instabilities of stationary plasmas
13. Shear flow and rotation
14. Resistive plasma dynamics
15. Computational linear MHD
Part V. Toroidal Geometry: 16. Static equilibrium of toroidal plasmas
17. Linear dynamics of static toroidal plasmas
18. Linear dynamics of toroidal plasmas with flow
Part VI. Nonlinear Dynamics: 19. Turbulence in incompressible magneto-fluids
20. Computational nonlinear MHD
21. Transonic MHD flows and shocks
22. Ideal MHD in special relativity
Appendices: A. Vectors and coordinates
B. Tables of physical quantities
References
Index.
Part I. Plasma Physics Preliminaries: 1. Introduction
2. Elements of plasma physics
3. 'Derivation' of the macroscopic equations
Part II. Basic Magnetohydrodynamics: 4. The MHD model
5. Waves and characteristics
6. Spectral theory
Part III. Standard Model Applications: 7. Waves and instabilities of inhomogeneous plasmas
8. Magnetic structures and dynamics of the solar system
9. Cylindrical plasmas
10. Initial value problem and wave damping
11. Resonant absorption and wave heating
Part IV. Flow and Dissipation: 12. Waves and instabilities of stationary plasmas
13. Shear flow and rotation
14. Resistive plasma dynamics
15. Computational linear MHD
Part V. Toroidal Geometry: 16. Static equilibrium of toroidal plasmas
17. Linear dynamics of static toroidal plasmas
18. Linear dynamics of toroidal plasmas with flow
Part VI. Nonlinear Dynamics: 19. Turbulence in incompressible magneto-fluids
20. Computational nonlinear MHD
21. Transonic MHD flows and shocks
22. Ideal MHD in special relativity
Appendices: A. Vectors and coordinates
B. Tables of physical quantities
References
Index.