here exists a gap in the present literature on quantum mechanics T and its application to solids. It has been difficult to find an intro ductory textbook which could take a student from the elementary quan tum mechanical ideas of the single-particle Schrodinger equations, through the formalism and new physical concepts of many-body theory, to the level where the student would be equipped to read the scientific literature and specialized books on specific topics. The present book, which I believe fills this gap, grew out of two courses which I have given for a number of years at the University…mehr
here exists a gap in the present literature on quantum mechanics T and its application to solids. It has been difficult to find an intro ductory textbook which could take a student from the elementary quan tum mechanical ideas of the single-particle Schrodinger equations, through the formalism and new physical concepts of many-body theory, to the level where the student would be equipped to read the scientific literature and specialized books on specific topics. The present book, which I believe fills this gap, grew out of two courses which I have given for a number of years at the University of Cambridge: "Advanced Quan tum Mechanics," covering the quantization of fields, representations, and creation and annihilation operators, and "Many Body Theory," on the application of quantum field theory to solids. The first course is a final-year undergraduate physics course while the second is a joint first and fourth-year undergraduate math year postgraduate physics course ematics course. In an American context this would closely correspond to a graduate course at the masters level. In writing this book I have tried to stress the physical aspects of the mathematics preferring where possible to introduce a technique by using a simple illustrative example rather than develop a purely formal treat ment. In order to do this I have assumed a certain familiarity with solid state physics on the level of a normal undergraduate course, but the book should also be useful to those without such a background.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. The Interacting System.- 1.1. The Basic Problem.- 1.2. The Jellium Solid.- 1.3. Hartree Theory-The Sommerfeld Model.- 1.4. Hartree-Fock.- 1.5. Exchange and Correlation Holes.- 1.6. Correlation Effects and the Thomas-Fermi Model.- Problems.- 2. Green's Functions of the Single-Particle Schrödinger Equation.- 2.1. Green's Functions of the Schrödinger Equation.- 2.2. Green's Functions and Perturbation Theory.- 2.3. Time-Dependent Green's Functions.- 2.4. Green's Function Diagrams.- 2.5. Green's Functions or Wave Functions?.- Problems.- 3. Quantization of Waves (Second Quantization).- 3.1. Waves and Particles.- 3.2. The Linear Chain of Atoms.- 3.3. The General Quantization of a Wave System.- 3.4. Quantization of the Electromagnetic Field.- 3.5. Elementary Excitations and "Particles".- 3.6. Perturbations and the Elementary Excitations.- 3.7. Summary.- Problems.- 4. Representations of Quantum Mechanics.- 4.1. Schrödinger Representation.- 4.2. Heisenberg Representation.- 4.3. Interaction Representation.- 4.4. Occupation Number Representation.- 4.5. Interaction between Waves and Particles.- 4.6. Field Operators.- Problems.- 5. Interacting Systems and Quasiparticles.- 5.1. Single-Particle States.- 5.2. Absorbing Media.- 5.3. Exact and Approximate Eigenstates.- 5.4. Landau Quasiparticles.- Problems.- 6. Many-Body Green's Functions.- 6.1. Definition of the Many-Body Green's Function.- 6.2. Relationship to Single-Particle Green's Function.- 6.3. Energy Structure and the Green's Function.- 6.4. The Lehman Representation and Quasiparticles.- 6.5. Expectation Values.- 6.6. Equation of Motion for the Green's Function.- 6.7. Hartree and Hartree-Fock Approximations.- 6.8. The Self-Energy.- Problems.- 7. The Self-Energy and Perturbation Series.- 7.1.Functional Derivatives and the Calculation of G and ?.- 7.2. Iterative Solution for the Green's Function and Self-Energy.- 7.3. Screening and the Perturbation Series.- 7.4. The Screened Interaction and Selective Summations.- 7.5. The Uniform System.- Problems.- 8. Diagrammatic Interpretation of the Green's Function Series.- 8.1. Diagrammatic Interpretation of the Perturbation Series.- 8.2. Diagrammatic Expansion.- 8.3. Infinite Series and Irreducible Diagrams.- 8.4. The Hartree Potential.- 8.5. The Uniform System.- 8.6. Rules for Evaluating Diagrams.- 8.7. Selective Summations.- 8.8. Practical Aspects of Diagrammatics.- Problems.- 9. The Normal System.- 9.1. The Jellium Solid Response Function.- 9.2. The Self-Energy (Physical Considerations).- 9.3. Evaluation of the Self-Energy and Quasiparticle Properties.- 9.4. Landau Quasiparticles.- 9.5. Insulating Systems.- 9.6. Surfaces.- Problems.- 10. Thermal Effects on the Green's Function.- 10.1. The Density Matrix.- 10.2. Statistical Mechanics.- 10.3. The "Thermal" Heisenberg Representation.- 10.4. Evaluation of the Perturbation Expansion.- 10.5. Periodicity of G and the Extension to Energy Dependency.- 10.6. Real-Time Thermal Green's Functions.- Problems.- 11. Boson Particles.- 11.1. Collective Excitations in Solids.- 11.2. Electron-Phonon System.- 11.3. Plasmons and the Total Interaction.- 11.4. Boson Systems with a Condensate.- Problems.- 12. Special Methods.- 12.1. The Density Functional Method (Nearly Uniform Electron Gases).- 12.2. Highly Localized Systems (Anderson-Hubbard Models).- 12.3. Canonical Transformations.- 12.4. Mean-Field Theory.- Problems.- 13. Superconductivity.- 13.1. Cooper Pairs.- 13.2. Canonical Transformations.- 13.3. Propagator Approach.- Problems.- Appendix: List of Symbols.
1. The Interacting System.- 1.1. The Basic Problem.- 1.2. The Jellium Solid.- 1.3. Hartree Theory-The Sommerfeld Model.- 1.4. Hartree-Fock.- 1.5. Exchange and Correlation Holes.- 1.6. Correlation Effects and the Thomas-Fermi Model.- Problems.- 2. Green's Functions of the Single-Particle Schrödinger Equation.- 2.1. Green's Functions of the Schrödinger Equation.- 2.2. Green's Functions and Perturbation Theory.- 2.3. Time-Dependent Green's Functions.- 2.4. Green's Function Diagrams.- 2.5. Green's Functions or Wave Functions?.- Problems.- 3. Quantization of Waves (Second Quantization).- 3.1. Waves and Particles.- 3.2. The Linear Chain of Atoms.- 3.3. The General Quantization of a Wave System.- 3.4. Quantization of the Electromagnetic Field.- 3.5. Elementary Excitations and "Particles".- 3.6. Perturbations and the Elementary Excitations.- 3.7. Summary.- Problems.- 4. Representations of Quantum Mechanics.- 4.1. Schrödinger Representation.- 4.2. Heisenberg Representation.- 4.3. Interaction Representation.- 4.4. Occupation Number Representation.- 4.5. Interaction between Waves and Particles.- 4.6. Field Operators.- Problems.- 5. Interacting Systems and Quasiparticles.- 5.1. Single-Particle States.- 5.2. Absorbing Media.- 5.3. Exact and Approximate Eigenstates.- 5.4. Landau Quasiparticles.- Problems.- 6. Many-Body Green's Functions.- 6.1. Definition of the Many-Body Green's Function.- 6.2. Relationship to Single-Particle Green's Function.- 6.3. Energy Structure and the Green's Function.- 6.4. The Lehman Representation and Quasiparticles.- 6.5. Expectation Values.- 6.6. Equation of Motion for the Green's Function.- 6.7. Hartree and Hartree-Fock Approximations.- 6.8. The Self-Energy.- Problems.- 7. The Self-Energy and Perturbation Series.- 7.1.Functional Derivatives and the Calculation of G and ?.- 7.2. Iterative Solution for the Green's Function and Self-Energy.- 7.3. Screening and the Perturbation Series.- 7.4. The Screened Interaction and Selective Summations.- 7.5. The Uniform System.- Problems.- 8. Diagrammatic Interpretation of the Green's Function Series.- 8.1. Diagrammatic Interpretation of the Perturbation Series.- 8.2. Diagrammatic Expansion.- 8.3. Infinite Series and Irreducible Diagrams.- 8.4. The Hartree Potential.- 8.5. The Uniform System.- 8.6. Rules for Evaluating Diagrams.- 8.7. Selective Summations.- 8.8. Practical Aspects of Diagrammatics.- Problems.- 9. The Normal System.- 9.1. The Jellium Solid Response Function.- 9.2. The Self-Energy (Physical Considerations).- 9.3. Evaluation of the Self-Energy and Quasiparticle Properties.- 9.4. Landau Quasiparticles.- 9.5. Insulating Systems.- 9.6. Surfaces.- Problems.- 10. Thermal Effects on the Green's Function.- 10.1. The Density Matrix.- 10.2. Statistical Mechanics.- 10.3. The "Thermal" Heisenberg Representation.- 10.4. Evaluation of the Perturbation Expansion.- 10.5. Periodicity of G and the Extension to Energy Dependency.- 10.6. Real-Time Thermal Green's Functions.- Problems.- 11. Boson Particles.- 11.1. Collective Excitations in Solids.- 11.2. Electron-Phonon System.- 11.3. Plasmons and the Total Interaction.- 11.4. Boson Systems with a Condensate.- Problems.- 12. Special Methods.- 12.1. The Density Functional Method (Nearly Uniform Electron Gases).- 12.2. Highly Localized Systems (Anderson-Hubbard Models).- 12.3. Canonical Transformations.- 12.4. Mean-Field Theory.- Problems.- 13. Superconductivity.- 13.1. Cooper Pairs.- 13.2. Canonical Transformations.- 13.3. Propagator Approach.- Problems.- Appendix: List of Symbols.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826