Zwar revolutionierte die Black/Scholes-Theorie die Optionspreisbewertung, doch belegen empirische Studien, dass sie die Marktpreise gehandelter Optionen nicht vollständig erklären kann. Bernhard Brunner entwickelt ein Konzept zur arbitragefreien und marktgerechten Optionsbewertung, ohne dabei aufwändige numerische Verfahren anzuwenden. Hierzu leitet er aus den Transaktionspreisen liquider Standardoptionen ein implizites äquivalentes Martingalmaß ab. Die ausführliche theoretische Beschreibung des Konzepts wird durch die praktische Umsetzung mit Hilfe einer geeigneten Datenbank ergänzt.
Zwar revolutionierte die Black/Scholes-Theorie die Optionspreisbewertung, doch belegen empirische Studien, dass sie die Marktpreise gehandelter Optionen nicht vollständig erklären kann.
Bernhard Brunner entwickelt ein Konzept zur arbitragefreien und marktgerechten Optionsbewertung, ohne dabei aufwändige numerische Verfahren anzuwenden. Hierzu leitet er aus den Transaktionspreisen liquider Standardoptionen ein implizites äquivalentes Martingalmaß ab. Die ausführliche theoretische Beschreibung des Konzepts wird durch die praktische Umsetzung mit Hilfe einer geeigneten Datenbank ergänzt. Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr. Bernhard Brunner ist wissenschaftlicher Mitarbeiter von Prof. Dr. Manfred Steiner am Lehrstuhl für Betriebswirtschaftslehre, Schwerpunkt Finanz- und Bankwirtschaft, der Universität Augsburg.
Inhaltsangabe
1 Einleitung.- 2 Optionen und deren allgemeine Bewertung.- 2.1 Von der Standardoption bis zu exotischen Optionen.- 2.2 Die Bewertung von Optionen.- 2.3 Diskrepanzen zwischen Marktpreisen und Black/Scholes-Preisen - Der "Smile-Effekt".- 2.4 Das Prinzip der marktgerechten Optionsbewertung.- 3 Pfadunabhängige Optionen.- 3.1 Die implizite Verteilung.- 3.2 Methoden zur Konstruktion einer impliziten Verteilung.- 3.3 Bewertung von pfadunabhängigen Optionen.- 3.4 Praktische Umsetzung.- 4 Korrelationsabhängige Optionen.- 4.1 Die implizite mehrdimensionale Verteilung.- 4.2 Konstruktion einer impliziten mehrdimensionalen Verteilung.- 4.3 Marktgerechte Bewertung korrelationsabhängiger Optionen.- 4.4 Praktische Umsetzung.- 5 Diskret-pfadabhängige Optionen.- 5.1 Allgemeines Vorgehen.- 5.2 Marktgerechte Bewertungsformeln ausgewählter diskret-pfadabhängiger Optionen.- 5.3 Praktische Umsetzung.- 6 Stetig-pfadabhängige Optionen.- 6.1 Der allgemeine Bewertungsansatz und seine Problematik.- 6.2 Die bedingte risikoneutrale Verteilung.- 6.3 Konstruktion einer bedingten impliziten RND.- 6.4 Preisformeln ausgewählter stetig-pfadabhängiger Optionen.- 6.5 Praktische Umsetzung.- 7 Zusammenfassung.- A Black/Scholes-Preisformeln und -Kennzahlen.- A.1 Europäische Standardoption.- A.1.1 Definitionen.- A.1.2 Optionspreise.- A.1.3 Sensitivitätskennzahlen.- A.2 Einfache Barrier-Optionen.- A.2.1 Definitionen.- A.2.2 Optionspreise.- A.2.3 Sensitivitätskennzahlen.- A.3 Weitere verwendete Black/Scholes-Preisformeln.- A.3.1 Definitionen.- A.3.2 Preisformeln.- A.3.2.1 Pfadunabhängige Optionen.- A.3.2.2 Korrelationsabhängige Optionen.- A.3.2.3 Diskret-pfadabhängige Optionen.- A.3.2.4 Stetig-pfadabhängige Optionen.- B Beweise.- B.1 Beweise für die Gleichungen (3.22), (3.23) und (3.24).-B.2 Beweis für die Wohldefiniertheit der RND.- B.3 Beweis für die Wohldefiniertheit der bedingten RND.- C Weitere empirische Ergebnisse.