Dieses Lehrbuch bietet neben einer umfassenden Darstellung der Theorie der Martingale in diskreter Zeit auch ausführliche Anwendungen. Die behandelten Themen reichen von klassischem Material über Zerlegungen von stochastischen Prozessen und Submartingalen, quadratische Variation und quadratische Charakteristik, Kompensatoren und Potentiale, Stoppzeiten und gestoppte Prozesse, Ungleichungen, Konvergenz und lokale Konvergenz, starke Gesetze der großen Zahlen, Gesetze vom iterierten Logarithmus und den Zusammenhang mit Markov-Prozessen bis zu neueren Ergebnissen über exponentielle Ungleichungen, einen stabilen zentralen Grenzwertsatz mit exponentieller Rate und die optionale Zerlegung universeller Supermartingale. Die Anwendungen betreffen etwa das finanzmathematische Problem der Optionsbewertung, Verzweigungsprozesse und stochastische Approximationsalgorithmen. Mehr als 170 Übungsaufgaben ergänzen die Darstellung. In der deutschsprachigen Literatur findet man kein vergleichbares Buch..