Nicht lieferbar
Material Modeling with the Visco-Plastic Self-Consistent (Vpsc) Approach - Tome, Carlos N; Lebensohn, Ricardo A
Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
  • Broschiertes Buch

Material Modeling with the Visco-Plastic Self-Consistent (VPSC) Approach: Theory and Practical Applications provides readers with knowledge of material viscoplasticity and robust modeling approaches for predicting plastic deformation of crystal aggregates. Visco-Plastic Self-Consistent (VPSC) is the identifier of a computer code developed for the specific mechanical regime addressed (visco-plastic: VP) and the approach used (self-consistent: SC) meant to simulate large plastic deformation of aggregates, thermo-elastic material deformation, as well as predict stress-strain response, texture…mehr

Produktbeschreibung
Material Modeling with the Visco-Plastic Self-Consistent (VPSC) Approach: Theory and Practical Applications provides readers with knowledge of material viscoplasticity and robust modeling approaches for predicting plastic deformation of crystal aggregates. Visco-Plastic Self-Consistent (VPSC) is the identifier of a computer code developed for the specific mechanical regime addressed (visco-plastic: VP) and the approach used (self-consistent: SC) meant to simulate large plastic deformation of aggregates, thermo-elastic material deformation, as well as predict stress-strain response, texture evolution of aggregates and stress-strain state inside grains. This approach is very versatile and able to tackle arbitrary material symmetry (cubic, hexagonal, trigonal, orthorhombic, triclinic), twinning, and multiphase aggregates. It accounts for hardening, reorientation and shape change of individual grains, and can be applied to the deformation of metals, inter-metallics and geologic aggregates. Readers will have access to a companion website where they can download code and modify its input/output or add subroutines covering specific simulation research needs.
Autorenporträt
Dr. Tome is a Laboratory Fellow at Los Alamos National Laboratory where he started at in 1996 as Scientist. Prior he was a Professor at the National University of La Plata (Argentina). For the last 35 years his research interest has been on elastic, plastic, and creep behavior of polycrystalline aggregates, with a focus on development of constitutive equations at the single crystal level for low symmetry metals and geologic materials. His research includes pioneering the theoretical and numerical modeling of mechanical behavior of polycrystals with a focus on the role played by texture, twinning, and microstructure. He has over 200 peer-reviewed publications with over 20k citations. He has co-authored multiple books and has won multiple awards.