161,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
81 °P sammeln
  • Broschiertes Buch

Mathematical, statistical, and computational methods enable multi-disciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. This volume collects a representative sample of studies in T cell immunology that illustrate the benefits of modelling-experimental collaborations and which have proven valuable or even ground-breaking. Studies include thymic selection, T cell repertoire diversity, T cell homeostasis in health and disease, T cell-mediated immune responses, T cell memory,…mehr

Produktbeschreibung
Mathematical, statistical, and computational methods enable multi-disciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. This volume collects a representative sample of studies in T cell immunology that illustrate the benefits of modelling-experimental collaborations and which have proven valuable or even ground-breaking. Studies include thymic selection, T cell repertoire diversity, T cell homeostasis in health and disease, T cell-mediated immune responses, T cell memory, T cell signalling and analysis of flow cytometry data sets. Contributing authors are leading scientists in the area of experimental, computational, and mathematical immunology. Each chapter includes state-of-the-art and pedagogical content, making this book accessible to readers with limited experience in T cell immunology and/or mathematical and computational modelling.

Autorenporträt
Grant Lythe and Carmen Molina-París are Professors of Applied Mathematics at the University of Leeds. They have coordinated the FP7 Initial Training Network on Quantitative T cell Immunology (2013-2017) and they currently coordinate the H2020 Innovative Training Network on Quantitative T cell Immunology and Immunotherapy (2018-2022).