- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book provides interdisciplinary and integrative overview of mathematical modeling, making it a complete textbook for a wide audience. This book is aimed at newcomers who desires to learn mathematical modeling, especially students taking a first course in the subject.
Andere Kunden interessierten sich auch für
- Steven G KrantzDifferential Equations167,99 €
- Dean G DuffyGreen's Functions with Applications239,99 €
- T S L RadhikaApproximate Analytical Methods for Solving Ordinary Differential Equations275,99 €
- Abhijit PanditMathematical Modeling using Fuzzy Logic157,99 €
- Lorin R DavisFundamentals of Environmental Discharge Modeling168,99 €
- Suman Kumar TumuluriA First Course in Ordinary Differential Equations129,99 €
- Robert E WhiteElements of Matrix Modeling and Computing with MATLAB157,99 €
-
-
-
This book provides interdisciplinary and integrative overview of mathematical modeling, making it a complete textbook for a wide audience. This book is aimed at newcomers who desires to learn mathematical modeling, especially students taking a first course in the subject.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd (Sales)
- 2nd edition
- Seitenzahl: 434
- Erscheinungstermin: 6. Dezember 2021
- Englisch
- Abmessung: 234mm x 156mm x 24mm
- Gewicht: 780g
- ISBN-13: 9781138495944
- ISBN-10: 1138495948
- Artikelnr.: 62274152
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Taylor & Francis Ltd (Sales)
- 2nd edition
- Seitenzahl: 434
- Erscheinungstermin: 6. Dezember 2021
- Englisch
- Abmessung: 234mm x 156mm x 24mm
- Gewicht: 780g
- ISBN-13: 9781138495944
- ISBN-10: 1138495948
- Artikelnr.: 62274152
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Sandip Banerjee is a Professor in the Department of Mathematics, Indian Institute of Technology Roorkee (IITR), India. His areas of research is Mathematical Biology. Mathematical modeling is his passion. Prof. Banerjee was the recipient of the Indo-US Fellowship in 2009 and he was awarded IUSSTF Research Fellow medal by the Indo-US Technology Forum. In addition to several national and international projects, Prof. Banerjee is involved in the Virtual Network in Mathematical Biology project, which promotes Mathematical Biology in India. He has also developed several courses like Differential Equations and Numerical Analysis for e-Pathshala and National Programme on Technology Enhanced Learning (NPTEL) projects, initiated by Ministry of Human Resource Development (MHDR) India.
1. About Mathematical Modeling. 1.1. What is Mathematical Modeling? 1.2.
History of Mathematical Modeling. 1.3. Importance of Mathematical Modeling.
1.4. Latest Developments in Mathematical Modeling. 1.5. Limitations of
Mathematical Modeling. 1.6. Units. 1.7. Dimensions. 1.8. Dimensional
Analysis. 1.9. Scaling. 1.10. How to built Mathematical Models. 1.11.
Mathematical Models and Functions. 1.12. Functional Responses in Population
Dynamics. 1.13. Miscellaneous Examples. 1.14. Exercises.
2. Discrete Models using Difference Equations. 2.1. Difference Equations.
2.2. Introduction to Discrete Models. 2.3. Linear Models. 2.4. Non-Linear
Models. 2.5. Bifurcations in Discrete Models. 2.6. Chaos in Discrete
Models. 2.7. Miscellaneous Examples. 2.8. Mathematica Codes. 2.9. Matlab
Codes. 2.10. Exercises. 2.11. Projects.
3. Continuous Models using Ordinary Differential Equations. 3.1.
Introduction to Continuous Models. 3.2. Steady State Solution. 3.3.
Stability. 3.4. Phase Plane Diagrams of Linear Systems. 3.5. Continuous
Models. 3.6. Bifurcations. 3.7. Estimation of Model Parameters. 3.8. Chaos
in Continuous Models. 3.9. Miscellaneous Examples. 3.10. Mathematica Codes.
3.11. Matlab Codes. 3.12. Exercises. 3.13. Projects.
4. Spatial Models using Partial Differential Equations. 4.1. Introduction.
4.2. Heat Flow through a Small Thin Rod (One Dimensional). 4.3. Two
dimensional Heat-equation (Diffusion equation). 4.4. Steady Heat Flow:
Laplace equation. 4.5. Wave Equation. 4.6. Two dimensional Wave Equation.
4.7. Fluid Flow through a Porous Medium. 4.8. Traffic Flow. 4.9. Crime
Model. 4.10. Reaction Diffusion Systems. 4.11. Mathematica Codes. 4.12.
Matlab Codes. 4.13. Miscellaneous Examples. 4.14. Exercises. 4.15. Project.
5. Modeling with Delay Differential Equations. 5.1. Introduction. 5.2.
Linear Stability Analysis. 5.3. Different Models with Delay Differential
Equations. 5.4. Immunotherapy with Interleukin-2, a study based on
Mathematical Modeling. 5.5. Miscellaneous Examples. 5.6. Mathematica Codes.
5.7. Matlab Codes. 5.8. Exercises. 5.9. Project.
6. Modeling with Stochastic Differential Equations. 6.1. Introduction. 6.2.
Stochastic Models. 6.3. Research Problem: Cancer Self-Remission and Tumor
Stability - a stochastic approach. 6.4. Mathematica Codes. 6.5. Matlab
Codes. 6.6. Exercises.
7. Hints and Solutions.
Bibliography.
Index.
History of Mathematical Modeling. 1.3. Importance of Mathematical Modeling.
1.4. Latest Developments in Mathematical Modeling. 1.5. Limitations of
Mathematical Modeling. 1.6. Units. 1.7. Dimensions. 1.8. Dimensional
Analysis. 1.9. Scaling. 1.10. How to built Mathematical Models. 1.11.
Mathematical Models and Functions. 1.12. Functional Responses in Population
Dynamics. 1.13. Miscellaneous Examples. 1.14. Exercises.
2. Discrete Models using Difference Equations. 2.1. Difference Equations.
2.2. Introduction to Discrete Models. 2.3. Linear Models. 2.4. Non-Linear
Models. 2.5. Bifurcations in Discrete Models. 2.6. Chaos in Discrete
Models. 2.7. Miscellaneous Examples. 2.8. Mathematica Codes. 2.9. Matlab
Codes. 2.10. Exercises. 2.11. Projects.
3. Continuous Models using Ordinary Differential Equations. 3.1.
Introduction to Continuous Models. 3.2. Steady State Solution. 3.3.
Stability. 3.4. Phase Plane Diagrams of Linear Systems. 3.5. Continuous
Models. 3.6. Bifurcations. 3.7. Estimation of Model Parameters. 3.8. Chaos
in Continuous Models. 3.9. Miscellaneous Examples. 3.10. Mathematica Codes.
3.11. Matlab Codes. 3.12. Exercises. 3.13. Projects.
4. Spatial Models using Partial Differential Equations. 4.1. Introduction.
4.2. Heat Flow through a Small Thin Rod (One Dimensional). 4.3. Two
dimensional Heat-equation (Diffusion equation). 4.4. Steady Heat Flow:
Laplace equation. 4.5. Wave Equation. 4.6. Two dimensional Wave Equation.
4.7. Fluid Flow through a Porous Medium. 4.8. Traffic Flow. 4.9. Crime
Model. 4.10. Reaction Diffusion Systems. 4.11. Mathematica Codes. 4.12.
Matlab Codes. 4.13. Miscellaneous Examples. 4.14. Exercises. 4.15. Project.
5. Modeling with Delay Differential Equations. 5.1. Introduction. 5.2.
Linear Stability Analysis. 5.3. Different Models with Delay Differential
Equations. 5.4. Immunotherapy with Interleukin-2, a study based on
Mathematical Modeling. 5.5. Miscellaneous Examples. 5.6. Mathematica Codes.
5.7. Matlab Codes. 5.8. Exercises. 5.9. Project.
6. Modeling with Stochastic Differential Equations. 6.1. Introduction. 6.2.
Stochastic Models. 6.3. Research Problem: Cancer Self-Remission and Tumor
Stability - a stochastic approach. 6.4. Mathematica Codes. 6.5. Matlab
Codes. 6.6. Exercises.
7. Hints and Solutions.
Bibliography.
Index.
1. About Mathematical Modeling. 1.1. What is Mathematical Modeling? 1.2.
History of Mathematical Modeling. 1.3. Importance of Mathematical Modeling.
1.4. Latest Developments in Mathematical Modeling. 1.5. Limitations of
Mathematical Modeling. 1.6. Units. 1.7. Dimensions. 1.8. Dimensional
Analysis. 1.9. Scaling. 1.10. How to built Mathematical Models. 1.11.
Mathematical Models and Functions. 1.12. Functional Responses in Population
Dynamics. 1.13. Miscellaneous Examples. 1.14. Exercises.
2. Discrete Models using Difference Equations. 2.1. Difference Equations.
2.2. Introduction to Discrete Models. 2.3. Linear Models. 2.4. Non-Linear
Models. 2.5. Bifurcations in Discrete Models. 2.6. Chaos in Discrete
Models. 2.7. Miscellaneous Examples. 2.8. Mathematica Codes. 2.9. Matlab
Codes. 2.10. Exercises. 2.11. Projects.
3. Continuous Models using Ordinary Differential Equations. 3.1.
Introduction to Continuous Models. 3.2. Steady State Solution. 3.3.
Stability. 3.4. Phase Plane Diagrams of Linear Systems. 3.5. Continuous
Models. 3.6. Bifurcations. 3.7. Estimation of Model Parameters. 3.8. Chaos
in Continuous Models. 3.9. Miscellaneous Examples. 3.10. Mathematica Codes.
3.11. Matlab Codes. 3.12. Exercises. 3.13. Projects.
4. Spatial Models using Partial Differential Equations. 4.1. Introduction.
4.2. Heat Flow through a Small Thin Rod (One Dimensional). 4.3. Two
dimensional Heat-equation (Diffusion equation). 4.4. Steady Heat Flow:
Laplace equation. 4.5. Wave Equation. 4.6. Two dimensional Wave Equation.
4.7. Fluid Flow through a Porous Medium. 4.8. Traffic Flow. 4.9. Crime
Model. 4.10. Reaction Diffusion Systems. 4.11. Mathematica Codes. 4.12.
Matlab Codes. 4.13. Miscellaneous Examples. 4.14. Exercises. 4.15. Project.
5. Modeling with Delay Differential Equations. 5.1. Introduction. 5.2.
Linear Stability Analysis. 5.3. Different Models with Delay Differential
Equations. 5.4. Immunotherapy with Interleukin-2, a study based on
Mathematical Modeling. 5.5. Miscellaneous Examples. 5.6. Mathematica Codes.
5.7. Matlab Codes. 5.8. Exercises. 5.9. Project.
6. Modeling with Stochastic Differential Equations. 6.1. Introduction. 6.2.
Stochastic Models. 6.3. Research Problem: Cancer Self-Remission and Tumor
Stability - a stochastic approach. 6.4. Mathematica Codes. 6.5. Matlab
Codes. 6.6. Exercises.
7. Hints and Solutions.
Bibliography.
Index.
History of Mathematical Modeling. 1.3. Importance of Mathematical Modeling.
1.4. Latest Developments in Mathematical Modeling. 1.5. Limitations of
Mathematical Modeling. 1.6. Units. 1.7. Dimensions. 1.8. Dimensional
Analysis. 1.9. Scaling. 1.10. How to built Mathematical Models. 1.11.
Mathematical Models and Functions. 1.12. Functional Responses in Population
Dynamics. 1.13. Miscellaneous Examples. 1.14. Exercises.
2. Discrete Models using Difference Equations. 2.1. Difference Equations.
2.2. Introduction to Discrete Models. 2.3. Linear Models. 2.4. Non-Linear
Models. 2.5. Bifurcations in Discrete Models. 2.6. Chaos in Discrete
Models. 2.7. Miscellaneous Examples. 2.8. Mathematica Codes. 2.9. Matlab
Codes. 2.10. Exercises. 2.11. Projects.
3. Continuous Models using Ordinary Differential Equations. 3.1.
Introduction to Continuous Models. 3.2. Steady State Solution. 3.3.
Stability. 3.4. Phase Plane Diagrams of Linear Systems. 3.5. Continuous
Models. 3.6. Bifurcations. 3.7. Estimation of Model Parameters. 3.8. Chaos
in Continuous Models. 3.9. Miscellaneous Examples. 3.10. Mathematica Codes.
3.11. Matlab Codes. 3.12. Exercises. 3.13. Projects.
4. Spatial Models using Partial Differential Equations. 4.1. Introduction.
4.2. Heat Flow through a Small Thin Rod (One Dimensional). 4.3. Two
dimensional Heat-equation (Diffusion equation). 4.4. Steady Heat Flow:
Laplace equation. 4.5. Wave Equation. 4.6. Two dimensional Wave Equation.
4.7. Fluid Flow through a Porous Medium. 4.8. Traffic Flow. 4.9. Crime
Model. 4.10. Reaction Diffusion Systems. 4.11. Mathematica Codes. 4.12.
Matlab Codes. 4.13. Miscellaneous Examples. 4.14. Exercises. 4.15. Project.
5. Modeling with Delay Differential Equations. 5.1. Introduction. 5.2.
Linear Stability Analysis. 5.3. Different Models with Delay Differential
Equations. 5.4. Immunotherapy with Interleukin-2, a study based on
Mathematical Modeling. 5.5. Miscellaneous Examples. 5.6. Mathematica Codes.
5.7. Matlab Codes. 5.8. Exercises. 5.9. Project.
6. Modeling with Stochastic Differential Equations. 6.1. Introduction. 6.2.
Stochastic Models. 6.3. Research Problem: Cancer Self-Remission and Tumor
Stability - a stochastic approach. 6.4. Mathematica Codes. 6.5. Matlab
Codes. 6.6. Exercises.
7. Hints and Solutions.
Bibliography.
Index.