Thierry Goudon
Mathematics for Modeling and Scientific Computing
Thierry Goudon
Mathematics for Modeling and Scientific Computing
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book provides the mathematical basis for investigating numerically equations from physics, life sciences or engineering. Tools for analysis and algorithms are confronted to a large set of relevant examples that show the difficulties and the limitations of the most naïve approaches. These examples not only provide the opportunity to put into practice mathematical statements, but modeling issues are also addressed in detail, through the mathematical perspective.
Andere Kunden interessierten sich auch für
- Zdzislaw JackiewiczGeneral Linear Methods for Ordinary Differential Equations178,99 €
- Robert L BorrelliStudent Resource Manual to Accompany Differential Equations: A Modeling Perspective, 2e121,99 €
- William E BoyceElementary Differential Equations and Boundary Value Problems102,99 €
- Snehashish ChakravertyAdvanced Numerical and Semi-Analytical Methods for Differential Equations121,99 €
- James R BrannanDifferential Equations168,99 €
- Nelson G MarkleyPrinciples of Differential Equations213,99 €
- A V KimSystems with Delays233,99 €
-
-
-
This book provides the mathematical basis for investigating numerically equations from physics, life sciences or engineering. Tools for analysis and algorithms are confronted to a large set of relevant examples that show the difficulties and the limitations of the most naïve approaches. These examples not only provide the opportunity to put into practice mathematical statements, but modeling issues are also addressed in detail, through the mathematical perspective.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 472
- Erscheinungstermin: 21. November 2016
- Englisch
- Abmessung: 240mm x 161mm x 30mm
- Gewicht: 874g
- ISBN-13: 9781848219885
- ISBN-10: 1848219881
- Artikelnr.: 46007519
- Verlag: Wiley
- Seitenzahl: 472
- Erscheinungstermin: 21. November 2016
- Englisch
- Abmessung: 240mm x 161mm x 30mm
- Gewicht: 874g
- ISBN-13: 9781848219885
- ISBN-10: 1848219881
- Artikelnr.: 46007519
Thierry GOUDON, Senior research scientist INRIA, Sophia Antipolis Mediterranee Research Centre & Labo. J. A. Dieudonne, University of Nice Sophia Antipolis & CNRS, France
Preface ix
Chapter 1. Ordinary Differential Equations 1
1.1. Introduction to the theory of ordinary differential equations 1
1.1.1. Existence-uniqueness of first-order ordinary differential equations
1
1.1.2. The concept of maximal solution 11
1.1.3. Linear systems with constant coefficients 16
1.1.4. Higher-order differential equations 20
1.1.5. Inverse function theorem and implicit function theorem 21
1.2. Numerical simulation of ordinary differential equations, Euler
schemes, notions of convergence, consistence and stability 27
1.2.1. Introduction 27
1.2.2. Fundamental notions for the analysis of numerical ODE methods 29
1.2.3. Analysis of explicit and implicit Euler schemes 33
1.2.4. Higher-order schemes 50
1.2.5. Leslie's equation (Perron-Frobenius theorem, power method) 51
1.2.6. Modeling red blood cell agglomeration 78
1.2.7. SEI model 87
1.2.8. A chemotaxis problem 93
1.3. Hamiltonian problems 102
1.3.1. The pendulum problem 106
1.3.2. Symplectic matrices; symplectic schemes 112
1.3.3. Kepler problem 125
1.3.4. Numerical results 129
Chapter 2. Numerical Simulation of Stationary Partial Differential
Equations: Elliptic Problems 141
2.1. Introduction 141
2.1.1. The 1D model problem; elements of modeling and analysis 144
2.1.2. A radiative transfer problem 155
2.1.3. Analysis elements for multidimensional problems 163
2.2. Finite difference approximations to elliptic equations 166
2.2.1. Finite difference discretization principles 166
2.2.2. Analysis of the discrete problem 173
2.3. Finite volume approximation of elliptic equations 180
2.3.1. Discretization principles for finite volumes 180
2.3.2. Discontinuous coefficients 187
2.3.3. Multidimensional problems 189
2.4. Finite element approximations of elliptic equations 191
2.4.1. P1 approximation in one dimension 191
2.4.2. P2 approximations in one dimension 197
2.4.3. Finite element methods, extension to higher dimensions 200
2.5. Numerical comparison of FD, FV and FE methods 204
2.6. Spectral methods 205
2.7. Poisson-Boltzmann equation; minimization of a convex function,
gradient descent algorithm 217
2.8. Neumann conditions: the optimization perspective 224
2.9. Charge distribution on a cord 228
2.10. Stokes problem 235
Chapter 3. Numerical Simulations of Partial Differential Equations:
Time-dependent Problems 267
3.1. Diffusion equations 267
3.1.1. L2 stability (von Neumann analysis) and L¿ stability: convergence
269
3.1.2. Implicit schemes 276
3.1.3. Finite element discretization 281
3.1.4. Numerical illustrations 283
3.2. From transport equations towards conservation laws 291
3.2.1. Introduction 291
3.2.2. Transport equation: method of characteristics 295
3.2.3. Upwinding principles: upwind scheme 299
3.2.4. Linear transport at constant speed; analysis of FD and FV schemes
301
3.2.5. Two-dimensional simulations 326
3.2.6. The dynamics of prion proliferation 329
3.3. Wave equation 345
3.4. Nonlinear problems: conservation laws 354
3.4.1. Scalar conservation laws 354
3.4.2. Systems of conservation laws 387
3.4.3. Kinetic schemes 393
Appendices 407
Appendix 1 409
Appendix 2 417
Appendix 3 427
Appendix 4 433
Appendix 5 443
Bibliography 447
Index 455
Chapter 1. Ordinary Differential Equations 1
1.1. Introduction to the theory of ordinary differential equations 1
1.1.1. Existence-uniqueness of first-order ordinary differential equations
1
1.1.2. The concept of maximal solution 11
1.1.3. Linear systems with constant coefficients 16
1.1.4. Higher-order differential equations 20
1.1.5. Inverse function theorem and implicit function theorem 21
1.2. Numerical simulation of ordinary differential equations, Euler
schemes, notions of convergence, consistence and stability 27
1.2.1. Introduction 27
1.2.2. Fundamental notions for the analysis of numerical ODE methods 29
1.2.3. Analysis of explicit and implicit Euler schemes 33
1.2.4. Higher-order schemes 50
1.2.5. Leslie's equation (Perron-Frobenius theorem, power method) 51
1.2.6. Modeling red blood cell agglomeration 78
1.2.7. SEI model 87
1.2.8. A chemotaxis problem 93
1.3. Hamiltonian problems 102
1.3.1. The pendulum problem 106
1.3.2. Symplectic matrices; symplectic schemes 112
1.3.3. Kepler problem 125
1.3.4. Numerical results 129
Chapter 2. Numerical Simulation of Stationary Partial Differential
Equations: Elliptic Problems 141
2.1. Introduction 141
2.1.1. The 1D model problem; elements of modeling and analysis 144
2.1.2. A radiative transfer problem 155
2.1.3. Analysis elements for multidimensional problems 163
2.2. Finite difference approximations to elliptic equations 166
2.2.1. Finite difference discretization principles 166
2.2.2. Analysis of the discrete problem 173
2.3. Finite volume approximation of elliptic equations 180
2.3.1. Discretization principles for finite volumes 180
2.3.2. Discontinuous coefficients 187
2.3.3. Multidimensional problems 189
2.4. Finite element approximations of elliptic equations 191
2.4.1. P1 approximation in one dimension 191
2.4.2. P2 approximations in one dimension 197
2.4.3. Finite element methods, extension to higher dimensions 200
2.5. Numerical comparison of FD, FV and FE methods 204
2.6. Spectral methods 205
2.7. Poisson-Boltzmann equation; minimization of a convex function,
gradient descent algorithm 217
2.8. Neumann conditions: the optimization perspective 224
2.9. Charge distribution on a cord 228
2.10. Stokes problem 235
Chapter 3. Numerical Simulations of Partial Differential Equations:
Time-dependent Problems 267
3.1. Diffusion equations 267
3.1.1. L2 stability (von Neumann analysis) and L¿ stability: convergence
269
3.1.2. Implicit schemes 276
3.1.3. Finite element discretization 281
3.1.4. Numerical illustrations 283
3.2. From transport equations towards conservation laws 291
3.2.1. Introduction 291
3.2.2. Transport equation: method of characteristics 295
3.2.3. Upwinding principles: upwind scheme 299
3.2.4. Linear transport at constant speed; analysis of FD and FV schemes
301
3.2.5. Two-dimensional simulations 326
3.2.6. The dynamics of prion proliferation 329
3.3. Wave equation 345
3.4. Nonlinear problems: conservation laws 354
3.4.1. Scalar conservation laws 354
3.4.2. Systems of conservation laws 387
3.4.3. Kinetic schemes 393
Appendices 407
Appendix 1 409
Appendix 2 417
Appendix 3 427
Appendix 4 433
Appendix 5 443
Bibliography 447
Index 455
Preface ix
Chapter 1. Ordinary Differential Equations 1
1.1. Introduction to the theory of ordinary differential equations 1
1.1.1. Existence-uniqueness of first-order ordinary differential equations
1
1.1.2. The concept of maximal solution 11
1.1.3. Linear systems with constant coefficients 16
1.1.4. Higher-order differential equations 20
1.1.5. Inverse function theorem and implicit function theorem 21
1.2. Numerical simulation of ordinary differential equations, Euler
schemes, notions of convergence, consistence and stability 27
1.2.1. Introduction 27
1.2.2. Fundamental notions for the analysis of numerical ODE methods 29
1.2.3. Analysis of explicit and implicit Euler schemes 33
1.2.4. Higher-order schemes 50
1.2.5. Leslie's equation (Perron-Frobenius theorem, power method) 51
1.2.6. Modeling red blood cell agglomeration 78
1.2.7. SEI model 87
1.2.8. A chemotaxis problem 93
1.3. Hamiltonian problems 102
1.3.1. The pendulum problem 106
1.3.2. Symplectic matrices; symplectic schemes 112
1.3.3. Kepler problem 125
1.3.4. Numerical results 129
Chapter 2. Numerical Simulation of Stationary Partial Differential
Equations: Elliptic Problems 141
2.1. Introduction 141
2.1.1. The 1D model problem; elements of modeling and analysis 144
2.1.2. A radiative transfer problem 155
2.1.3. Analysis elements for multidimensional problems 163
2.2. Finite difference approximations to elliptic equations 166
2.2.1. Finite difference discretization principles 166
2.2.2. Analysis of the discrete problem 173
2.3. Finite volume approximation of elliptic equations 180
2.3.1. Discretization principles for finite volumes 180
2.3.2. Discontinuous coefficients 187
2.3.3. Multidimensional problems 189
2.4. Finite element approximations of elliptic equations 191
2.4.1. P1 approximation in one dimension 191
2.4.2. P2 approximations in one dimension 197
2.4.3. Finite element methods, extension to higher dimensions 200
2.5. Numerical comparison of FD, FV and FE methods 204
2.6. Spectral methods 205
2.7. Poisson-Boltzmann equation; minimization of a convex function,
gradient descent algorithm 217
2.8. Neumann conditions: the optimization perspective 224
2.9. Charge distribution on a cord 228
2.10. Stokes problem 235
Chapter 3. Numerical Simulations of Partial Differential Equations:
Time-dependent Problems 267
3.1. Diffusion equations 267
3.1.1. L2 stability (von Neumann analysis) and L¿ stability: convergence
269
3.1.2. Implicit schemes 276
3.1.3. Finite element discretization 281
3.1.4. Numerical illustrations 283
3.2. From transport equations towards conservation laws 291
3.2.1. Introduction 291
3.2.2. Transport equation: method of characteristics 295
3.2.3. Upwinding principles: upwind scheme 299
3.2.4. Linear transport at constant speed; analysis of FD and FV schemes
301
3.2.5. Two-dimensional simulations 326
3.2.6. The dynamics of prion proliferation 329
3.3. Wave equation 345
3.4. Nonlinear problems: conservation laws 354
3.4.1. Scalar conservation laws 354
3.4.2. Systems of conservation laws 387
3.4.3. Kinetic schemes 393
Appendices 407
Appendix 1 409
Appendix 2 417
Appendix 3 427
Appendix 4 433
Appendix 5 443
Bibliography 447
Index 455
Chapter 1. Ordinary Differential Equations 1
1.1. Introduction to the theory of ordinary differential equations 1
1.1.1. Existence-uniqueness of first-order ordinary differential equations
1
1.1.2. The concept of maximal solution 11
1.1.3. Linear systems with constant coefficients 16
1.1.4. Higher-order differential equations 20
1.1.5. Inverse function theorem and implicit function theorem 21
1.2. Numerical simulation of ordinary differential equations, Euler
schemes, notions of convergence, consistence and stability 27
1.2.1. Introduction 27
1.2.2. Fundamental notions for the analysis of numerical ODE methods 29
1.2.3. Analysis of explicit and implicit Euler schemes 33
1.2.4. Higher-order schemes 50
1.2.5. Leslie's equation (Perron-Frobenius theorem, power method) 51
1.2.6. Modeling red blood cell agglomeration 78
1.2.7. SEI model 87
1.2.8. A chemotaxis problem 93
1.3. Hamiltonian problems 102
1.3.1. The pendulum problem 106
1.3.2. Symplectic matrices; symplectic schemes 112
1.3.3. Kepler problem 125
1.3.4. Numerical results 129
Chapter 2. Numerical Simulation of Stationary Partial Differential
Equations: Elliptic Problems 141
2.1. Introduction 141
2.1.1. The 1D model problem; elements of modeling and analysis 144
2.1.2. A radiative transfer problem 155
2.1.3. Analysis elements for multidimensional problems 163
2.2. Finite difference approximations to elliptic equations 166
2.2.1. Finite difference discretization principles 166
2.2.2. Analysis of the discrete problem 173
2.3. Finite volume approximation of elliptic equations 180
2.3.1. Discretization principles for finite volumes 180
2.3.2. Discontinuous coefficients 187
2.3.3. Multidimensional problems 189
2.4. Finite element approximations of elliptic equations 191
2.4.1. P1 approximation in one dimension 191
2.4.2. P2 approximations in one dimension 197
2.4.3. Finite element methods, extension to higher dimensions 200
2.5. Numerical comparison of FD, FV and FE methods 204
2.6. Spectral methods 205
2.7. Poisson-Boltzmann equation; minimization of a convex function,
gradient descent algorithm 217
2.8. Neumann conditions: the optimization perspective 224
2.9. Charge distribution on a cord 228
2.10. Stokes problem 235
Chapter 3. Numerical Simulations of Partial Differential Equations:
Time-dependent Problems 267
3.1. Diffusion equations 267
3.1.1. L2 stability (von Neumann analysis) and L¿ stability: convergence
269
3.1.2. Implicit schemes 276
3.1.3. Finite element discretization 281
3.1.4. Numerical illustrations 283
3.2. From transport equations towards conservation laws 291
3.2.1. Introduction 291
3.2.2. Transport equation: method of characteristics 295
3.2.3. Upwinding principles: upwind scheme 299
3.2.4. Linear transport at constant speed; analysis of FD and FV schemes
301
3.2.5. Two-dimensional simulations 326
3.2.6. The dynamics of prion proliferation 329
3.3. Wave equation 345
3.4. Nonlinear problems: conservation laws 354
3.4.1. Scalar conservation laws 354
3.4.2. Systems of conservation laws 387
3.4.3. Kinetic schemes 393
Appendices 407
Appendix 1 409
Appendix 2 417
Appendix 3 427
Appendix 4 433
Appendix 5 443
Bibliography 447
Index 455