Mathematics is the basic language in physics and engineering. This textbook offers an accessible and highly-effective approach to mathematics which is characterised by the combination of the textbook with a detailed study guide on an accompanying CD.
Mathematicsisanessentialtoolforphysicistsandengineerswhichstudentsmust usefromtheverybeginningoftheirstudies. Thiscombinationoftextbookandstudy guideaimstodevelopasrapidlyaspossiblethestudents abilitytounderstandand tousethosepartsofmathematicswhichtheywillmostfrequentlyencounter. Thus functions,vectors,calculus,differentialequationsandfunctionsofseveralvariables arepresentedin averyaccessible way. Furtherchaptersinthe bookprovidethe basicknowledgeonvariousimportanttopicsinappliedmathematics. Basedontheirextensiveexperienceaslecturers,eachoftheauthorshasacquired acloseawarenessoftheneedsof rst-andsecond-yearsstudents. Oneoftheiraims hasbeentohelpuserstotacklesuccessfullythedif cultieswithmathematicswhich are commonlymet. A special feature which extendsthe supportivevalue of the maintextbookistheaccompanying studyguide . Thisstudyguideaimstosatisfy twoobjectivessimultaneously:itenablesstudentstomakemoreeffectiveuseofthe maintextbook,anditoffersadviceandtrainingontheimprovementoftechniques onthestudyoftextbooksgenerally. Thestudyguidedividesthewholelearningtaskintosmallunitswhichthes- dentisverylikelytomastersuccessfully. Thusheorsheisaskedtoreadandstudy alimitedsectionofthetextbookandtoreturntothestudyguideafterwards. Lea- ingresultsarecontrolled,monitoredanddeepenedbygradedquestions,exercises, repetitionsand nallybyproblemsandapplicationsofthecontentstudied. Sincethe degreeofdif cultiesisslowlyrisingthestudentsgaincon denceimmediatelyand experiencetheirownprogressinmathematicalcompetencethusfosteringmoti- tion. Incaseoflearningdif cultiesheorsheisgivenadditionalexplanationsandin caseofindividualneedssupplementaryexercisesandapplications. Sothesequence ofthestudiesisindividualisedaccordingtotheindividualperformanceandneeds andcanberegardedasafulltutorialcourse. TheworkwasoriginallypublishedinGermanyunderthetitle Mathematikfür Physiker (Mathematicsforphysicists). Ithasproveditsworthinyearsofactual use. Thisnew internationalversionhasbeenmodi edand extendedto meet the needsofstudentsinphysicsandengineering. vii viii Preface TheCDofferstwoversions. Ina rstversiontheframesofthestudyguideare presentedonaPCscreen. Inthiscasetheuserfollowstheinstructionsgivenonthe screen,at rststudyingsectionsofthetextbookoffthePC. Afterthisautonomous studyheistoanswerquestionsandtosolveproblemspresentedbythePC. Asecond versionisgivenaspdf lesforstudentspreferringtoworkwithaprintversion. Boththetextbookandthestudyguidehaveresultedfromteamwork. The- thors of the original textbook and study guides were Prof. Dr. Weltner, Prof. Dr. P. -B. Heinrich,Prof. Dr. H. Wiesner,P. EngelhardandProf. Dr. H. Schmidt. Thetranslationandtheadaptionwasundertakenbytheundersigned. Frankfurt,August2009 K. Weltner J. Grosjean P. Schuster W. J. Weber Acknowledgement OriginallypublishedintheFederalRepublicofGermanyunderthetitle MathematikfürPhysiker bytheauthors K. Weltner,H. Wiesner,P. -B. Heinrich,P. EngelhardtandH. Schmidt. TheworkhasbeentranslatedbyJ. GrosjeanandP. Schusterandadaptedtotheneeds ofengineeringandsciencestudentsinEnglishspeakingcountriesbyJ. Grosjean, P. Schuster,W. J. WeberandK. Weltner. ix Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 VectorAlgebraI:ScalarsandVectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 ScalarsandVectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 AdditionofVectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 2. 1 SumofTwoVectors:GeometricalAddition . . . . . . . . . . . . . 4 1. 3 SubtractionofVectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 4 ComponentsandProjectionofaVector . . . . . . . . . . . . . . . . . . . . . . . 7 1. 5 ComponentRepresentationinCoordinateSystems. . . . . . . . . . . . . . 9 1. 5. 1 PositionVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 9 1. 5
Mathematicsisanessentialtoolforphysicistsandengineerswhichstudentsmust usefromtheverybeginningoftheirstudies. Thiscombinationoftextbookandstudy guideaimstodevelopasrapidlyaspossiblethestudents abilitytounderstandand tousethosepartsofmathematicswhichtheywillmostfrequentlyencounter. Thus functions,vectors,calculus,differentialequationsandfunctionsofseveralvariables arepresentedin averyaccessible way. Furtherchaptersinthe bookprovidethe basicknowledgeonvariousimportanttopicsinappliedmathematics. Basedontheirextensiveexperienceaslecturers,eachoftheauthorshasacquired acloseawarenessoftheneedsof rst-andsecond-yearsstudents. Oneoftheiraims hasbeentohelpuserstotacklesuccessfullythedif cultieswithmathematicswhich are commonlymet. A special feature which extendsthe supportivevalue of the maintextbookistheaccompanying studyguide . Thisstudyguideaimstosatisfy twoobjectivessimultaneously:itenablesstudentstomakemoreeffectiveuseofthe maintextbook,anditoffersadviceandtrainingontheimprovementoftechniques onthestudyoftextbooksgenerally. Thestudyguidedividesthewholelearningtaskintosmallunitswhichthes- dentisverylikelytomastersuccessfully. Thusheorsheisaskedtoreadandstudy alimitedsectionofthetextbookandtoreturntothestudyguideafterwards. Lea- ingresultsarecontrolled,monitoredanddeepenedbygradedquestions,exercises, repetitionsand nallybyproblemsandapplicationsofthecontentstudied. Sincethe degreeofdif cultiesisslowlyrisingthestudentsgaincon denceimmediatelyand experiencetheirownprogressinmathematicalcompetencethusfosteringmoti- tion. Incaseoflearningdif cultiesheorsheisgivenadditionalexplanationsandin caseofindividualneedssupplementaryexercisesandapplications. Sothesequence ofthestudiesisindividualisedaccordingtotheindividualperformanceandneeds andcanberegardedasafulltutorialcourse. TheworkwasoriginallypublishedinGermanyunderthetitle Mathematikfür Physiker (Mathematicsforphysicists). Ithasproveditsworthinyearsofactual use. Thisnew internationalversionhasbeenmodi edand extendedto meet the needsofstudentsinphysicsandengineering. vii viii Preface TheCDofferstwoversions. Ina rstversiontheframesofthestudyguideare presentedonaPCscreen. Inthiscasetheuserfollowstheinstructionsgivenonthe screen,at rststudyingsectionsofthetextbookoffthePC. Afterthisautonomous studyheistoanswerquestionsandtosolveproblemspresentedbythePC. Asecond versionisgivenaspdf lesforstudentspreferringtoworkwithaprintversion. Boththetextbookandthestudyguidehaveresultedfromteamwork. The- thors of the original textbook and study guides were Prof. Dr. Weltner, Prof. Dr. P. -B. Heinrich,Prof. Dr. H. Wiesner,P. EngelhardandProf. Dr. H. Schmidt. Thetranslationandtheadaptionwasundertakenbytheundersigned. Frankfurt,August2009 K. Weltner J. Grosjean P. Schuster W. J. Weber Acknowledgement OriginallypublishedintheFederalRepublicofGermanyunderthetitle MathematikfürPhysiker bytheauthors K. Weltner,H. Wiesner,P. -B. Heinrich,P. EngelhardtandH. Schmidt. TheworkhasbeentranslatedbyJ. GrosjeanandP. Schusterandadaptedtotheneeds ofengineeringandsciencestudentsinEnglishspeakingcountriesbyJ. Grosjean, P. Schuster,W. J. WeberandK. Weltner. ix Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 VectorAlgebraI:ScalarsandVectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 ScalarsandVectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 AdditionofVectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 2. 1 SumofTwoVectors:GeometricalAddition . . . . . . . . . . . . . 4 1. 3 SubtractionofVectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 4 ComponentsandProjectionofaVector . . . . . . . . . . . . . . . . . . . . . . . 7 1. 5 ComponentRepresentationinCoordinateSystems. . . . . . . . . . . . . . 9 1. 5. 1 PositionVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 9 1. 5