This is the fourth volume in the series "Mathematics in Industrial Prob lems." The motivation for these volumes is to foster interaction between Industry and Mathematics at the "grass roots"; that is, at the level of spe cific problems. These problems come from Industry: they arise from models developed by the industrial scientists in ventures directed at the manufac ture of new or improved products. At the same time, these problems have the potential for mathematical challenge and novelty. To identify such problems, I have visited industries and had discussions with their scientists. Some of…mehr
This is the fourth volume in the series "Mathematics in Industrial Prob lems." The motivation for these volumes is to foster interaction between Industry and Mathematics at the "grass roots"; that is, at the level of spe cific problems. These problems come from Industry: they arise from models developed by the industrial scientists in ventures directed at the manufac ture of new or improved products. At the same time, these problems have the potential for mathematical challenge and novelty. To identify such problems, I have visited industries and had discussions with their scientists. Some of the scientists have subsequently presented their problems in the IMA Seminar on Industrial Problems. The book is based on questions raised in the seminar and subsequent discussions. Each chapter is devoted to one of the talks and is self-contained. The chap ters usually provide references to the mathematical literature and a list of open problems which are of interest to the industrial scientists. For some problems partial solution is indicated briefly. The last chapter of the book contains a short description of solutions to some of the problems raised in the third volume, as well as references to papers in which such solutions have been published.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
The IMA Volumes in Mathematics and its Applications .38
1 Real-world free boundary problems.- 1.1 Hypersonic flow.- 1.2 Problems with free boundaries close to fixed boundaries.- 1.3 Free boundary problems in superconductors.- 1.4 Elastic contact.- 1.5 Partial solution.- 1.6 References.- 2 Terminally attached polymer chains.- 2.1 Experiments and the MWC model.- 2.2 The SCF theory.- 2.3 Numerical results.- 2.4 Mathematical problems.- 2.5 References.- 3 Orientation of colloidal magnetically switchable particles.- 3.1 Ferrohydrodynamics.- 3.2 A statistical mechanics approach.- 3.3 References.- 4 Information, probability and learning from examples.- 4.1 Learning from examples.- 4.2 Simple geometric examples.- 4.3 The Vapnik and Chervonenkis theory.- 4.4 References.- 5 An augmented drift-diffusion formulation in semiconductor devices.- 5.1 Semiconductor device modeling.- 5.2 The augmented drift-diffusion model.- 5.3 Mathematical issues.- 5.4 Partial solution.- 5.5 References.- 6 Analytical and heuristic modeling of distributed algorithms.- 6.1 Examples and terminology.- 6.2 Analytic results.- 6.3 Markov mode for search tree.- 6.4 Search with multiprocessor.- 6.5 References.- 7 Modeling catalytic converter performance.- 7.1 Chemical reactions.- 7.2 The differential equations.- 7.3 Numerical approach.- 7.4 Control problems.- 7.5 References.- 8 A model for titanium silicide film growth.- 8.1 Description of the process.- 8.2 A model with interfaces.- 8.3 A two-dimensional model.- 8.4 References.- 9 A three-state model for gel electrophoresis.- 9.1 Polymer reptation and the repton model.- 9.2 A biased repton model.- 9.3 Mapping into a discrete pseudospin model.- 9.4 Mean field approximation.- 9.5 Open problems.- 9.6 References.- 10 A limited coalescence problem.- 10.1 The model.- 10.2 Asymptotic distribution.- 10.3 The Monte Carlo method.- 10.4 Mathematical results.- 10.5 References.- 11 High field semiconductor equations.- 11.1 Motivation.- 11.2 Scaling.- 11.3 Moderate force.- 11.4 Strong force.- 11.5 The semiconductor case.- 11.6 Open problems.- 11.7 References.- 12 Structured singular values and invariant theory.- 12.1 FDLTI systems.- 12.2 Feedback under parametric uncertainty.- 12.3 Structured singular value.- 12.4 A new approach.- 12.5 Open problems.- 12.6 References.- 13 Signal design with an amplitude constraint.- 13.1 Lp/Lq signal design.- 13.2 Necessary optimality condition.- 13.3 The fixed-point problem.- 13.4 Open problems.- 13.5 References.- 14 Head-disk interface in magnetic storage device.- 14.1 Modified Reynolds equation.- 14.2 Free molecular flow.- 14.3 The limiting process as h?0.- 14.4 References.- 15 Parameter identification in a reaction diffusion model.- 15.1 The direct problem.- 15.2 The inverse problem.- 15.3 Modification of the model.- 15.4 A related problem.- 15.5 Existence and uniqueness.- 15.6 References.- 16 Linear analysis of megastructures.- 16.1 The three bar truss.- 16.2 The hypercircle method.- 16.3 References.- 17 Aerodynamic design with cfd.- 17.1 Vehicle drag.- 17.2 Governing equations.- 17.3 Simplifications.- 17.4 Research areas.- 17.5 References.- 18 Experimental design and quality loss function.- 18.1 Experimental design.- 18.2 Motivation.- 18.3 Sampling.- 18.4 The quality loss function.- 18.5 References.- 19 Numerical simulations for industrial chemical research.- 19.1 Computational approach to chemical research.- 19.2 Theoretical concepts.- 19.3 Requirements for atomistic computations.- 19.4 References.- 20 An adaptive feedforward approach to robot control.- 20.1 Mathematical model.- 20.2 Nonlinear feedforward.- 20.3 Path planning.- 20.4 Mathematicalissues.- 20.5 References.- 21 Solutions to problems from part 3.- 21.1 References.
1 Real-world free boundary problems.- 1.1 Hypersonic flow.- 1.2 Problems with free boundaries close to fixed boundaries.- 1.3 Free boundary problems in superconductors.- 1.4 Elastic contact.- 1.5 Partial solution.- 1.6 References.- 2 Terminally attached polymer chains.- 2.1 Experiments and the MWC model.- 2.2 The SCF theory.- 2.3 Numerical results.- 2.4 Mathematical problems.- 2.5 References.- 3 Orientation of colloidal magnetically switchable particles.- 3.1 Ferrohydrodynamics.- 3.2 A statistical mechanics approach.- 3.3 References.- 4 Information, probability and learning from examples.- 4.1 Learning from examples.- 4.2 Simple geometric examples.- 4.3 The Vapnik and Chervonenkis theory.- 4.4 References.- 5 An augmented drift-diffusion formulation in semiconductor devices.- 5.1 Semiconductor device modeling.- 5.2 The augmented drift-diffusion model.- 5.3 Mathematical issues.- 5.4 Partial solution.- 5.5 References.- 6 Analytical and heuristic modeling of distributed algorithms.- 6.1 Examples and terminology.- 6.2 Analytic results.- 6.3 Markov mode for search tree.- 6.4 Search with multiprocessor.- 6.5 References.- 7 Modeling catalytic converter performance.- 7.1 Chemical reactions.- 7.2 The differential equations.- 7.3 Numerical approach.- 7.4 Control problems.- 7.5 References.- 8 A model for titanium silicide film growth.- 8.1 Description of the process.- 8.2 A model with interfaces.- 8.3 A two-dimensional model.- 8.4 References.- 9 A three-state model for gel electrophoresis.- 9.1 Polymer reptation and the repton model.- 9.2 A biased repton model.- 9.3 Mapping into a discrete pseudospin model.- 9.4 Mean field approximation.- 9.5 Open problems.- 9.6 References.- 10 A limited coalescence problem.- 10.1 The model.- 10.2 Asymptotic distribution.- 10.3 The Monte Carlo method.- 10.4 Mathematical results.- 10.5 References.- 11 High field semiconductor equations.- 11.1 Motivation.- 11.2 Scaling.- 11.3 Moderate force.- 11.4 Strong force.- 11.5 The semiconductor case.- 11.6 Open problems.- 11.7 References.- 12 Structured singular values and invariant theory.- 12.1 FDLTI systems.- 12.2 Feedback under parametric uncertainty.- 12.3 Structured singular value.- 12.4 A new approach.- 12.5 Open problems.- 12.6 References.- 13 Signal design with an amplitude constraint.- 13.1 Lp/Lq signal design.- 13.2 Necessary optimality condition.- 13.3 The fixed-point problem.- 13.4 Open problems.- 13.5 References.- 14 Head-disk interface in magnetic storage device.- 14.1 Modified Reynolds equation.- 14.2 Free molecular flow.- 14.3 The limiting process as h?0.- 14.4 References.- 15 Parameter identification in a reaction diffusion model.- 15.1 The direct problem.- 15.2 The inverse problem.- 15.3 Modification of the model.- 15.4 A related problem.- 15.5 Existence and uniqueness.- 15.6 References.- 16 Linear analysis of megastructures.- 16.1 The three bar truss.- 16.2 The hypercircle method.- 16.3 References.- 17 Aerodynamic design with cfd.- 17.1 Vehicle drag.- 17.2 Governing equations.- 17.3 Simplifications.- 17.4 Research areas.- 17.5 References.- 18 Experimental design and quality loss function.- 18.1 Experimental design.- 18.2 Motivation.- 18.3 Sampling.- 18.4 The quality loss function.- 18.5 References.- 19 Numerical simulations for industrial chemical research.- 19.1 Computational approach to chemical research.- 19.2 Theoretical concepts.- 19.3 Requirements for atomistic computations.- 19.4 References.- 20 An adaptive feedforward approach to robot control.- 20.1 Mathematical model.- 20.2 Nonlinear feedforward.- 20.3 Path planning.- 20.4 Mathematicalissues.- 20.5 References.- 21 Solutions to problems from part 3.- 21.1 References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826