Die komplette Mathematik für Physiker: klar und anwendungsbezogen
Theorie gewöhnlicher Differentialgleichungen - Spezielle Funktionen der mathematischen Physik - Einführung in die qualitative Theorie - Fourierreihen und -integrale - Hilberträume und Lp-Räume - Distributionen - Rand- und Eigenwertprobleme für den Laplace-Operator - Wärmeleitungsgleichung und Wellengleichung - Wahrscheinlichkeit, Maß und Integral - Lineare Operatoren im Hilbertraum - Spektraltheorie selbstadjungierter Operatoren - Bezug der Spektraltheorie zur Quantenmechanik
Wie im ersten Band ihres Werkes stellen die Autoren die mathematischen Grundlagen der Physik in gut zugänglicher und ansprechender Form dar. Das Buch eignet sich sowohl für das Selbststudium als auch zur Begleitung von Vorlesungen.
Theorie gewöhnlicher Differentialgleichungen - Spezielle Funktionen der mathematischen Physik - Einführung in die qualitative Theorie - Fourierreihen und -integrale - Hilberträume und Lp-Räume - Distributionen - Rand- und Eigenwertprobleme für den Laplace-Operator - Wärmeleitungsgleichung und Wellengleichung - Wahrscheinlichkeit, Maß und Integral - Lineare Operatoren im Hilbertraum - Spektraltheorie selbstadjungierter Operatoren - Bezug der Spektraltheorie zur Quantenmechanik
Wie im ersten Band ihres Werkes stellen die Autoren die mathematischen Grundlagen der Physik in gut zugänglicher und ansprechender Form dar. Das Buch eignet sich sowohl für das Selbststudium als auch zur Begleitung von Vorlesungen.