Grundlagen: Mengen - Reelle Zahlen - Anordnung reelle Zahlen, Ungleichungen, Beträge - Mathematische Beweismethoden - Binomialkoeffizienten, binomischer Satz - Folgen - Reihen - Potenzen und Logarithmen - Einiges aus der Trigonometrie. Funktionen: Funktionen in der Ökonomie - Definitionen, Beispiele, Veranschaulichung von Funktionen. Differentialrechnung: Der Begriff der Ableitung einer Funktion - Ableitungsregeln - Die Ableitungen einiger wichtiger Funktionen - Wachstumsrate und Elastizität einer Funktion - Die geometrische Bedeutung der Ableitung - Kurvendiskussion - Die Regeln von DE L ´HOSÄPITAL - Partielle Ableitungen - Extremstellen von Funktionen mehrerer Variablen - Extremstellen mit Nebenbedingungen - Ausgleichen von Fehlern; Methode der kleinsten Quadrate. Integralrechnung: Der Begriff des bestimmten Integrals - Eigenschaften des Integrals - Zusammenhang zwischen Differential- und Integralrechnungen - Methoden zur Berechnung von Integralen - Uneigentliche Integrale - Tabellen der wichtigsten Grundintegrale. Matrizen, Deteminanten, lineare Gleichungssysteme: Matrizen, Definitionen und einfache Eigenschaften - Operationen mit Matrizen - Eigenschaften von Vektoren - Inversion von Matrizen - Determinanten - Lineare Gleichungssysteme. Grundbegriffe der linearen Optimierung: Beispiele linearer Optimierungsprobleme - Lineare Optimierung in zwei Variablen - Das Simplexverfahren.