Lothar Papula
Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler
Mit zahlreichen Rechenbeispielen und einer ausführlichen Integraltafel
Lothar Papula
Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler
Mit zahlreichen Rechenbeispielen und einer ausführlichen Integraltafel
- Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Mit Rechenbeispielen und einer ausführlichen Integraltafel mit über 400 in den naturwissenschaftlich-technischen Anwendungen besonders häufigen Integralen.
Mit Rechenbeispielen und einer ausführlichen Integraltafel mit über 400 in den naturwissenschaftlich-technischen Anwendungen besonders häufigen Integralen.
Produktdetails
- Produktdetails
- Verlag: VIEWEG
- 8., durchges. u. erg. Aufl. 2003.
- Abmessung: 24 cm
- Gewicht: 791g
- ISBN-13: 9783528744427
- ISBN-10: 3528744421
- Artikelnr.: 02875446
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: VIEWEG
- 8., durchges. u. erg. Aufl. 2003.
- Abmessung: 24 cm
- Gewicht: 791g
- ISBN-13: 9783528744427
- ISBN-10: 3528744421
- Artikelnr.: 02875446
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Lothar Papula, früher Dozent an der Universität Frankfurt/M., ist heute Professor für Mathematik an der Fachhochschule Wiesbaden. Er erhielt 2004 den Mathematikum-Preis.
Allgemeine Grundlagen aus Algebra, Arithmetik und Geometrie - Vektorrechnung - Funktionen und Kurven - Differentialrechnung - Integralrechnung - Unendliche Reihen, Taylor- und Fourier-Reihen - Lineare Algebra - Komplexe Zahlen und Funktionen - Differential- und Integralrechnung für Funktionen von mehreren Variablen - Gewöhnliche Differentialgleichungen - Fehler- und Ausgleichsrechnung - Laplace-Transformationen - Vektoranalysis - Wahrscheinlichkeitsforschung und Grundlagen der mathematischen Statistik
I Allgemeine Grundlagen aus Algebra, Arithmetik und Geometrie.- 1 Grundlegende Begriffe über Mengen.- 2 Rechnen mit reellen Zahlen.- 3 Elementare (endliche) Reihen.- 4 Gleichungen mit einer Unbekannten.- 5 Lehrsätze aus der elementaren Geometrie.- 6 Ebene geometrische Körper (Planimetrie).- 7 Räumliche geometrische Körper (Stereometrie).- 8 Koordinatensysteme.- II Vektorrechnung.- 1 Grundlegende Begriffe.- 2 Komponentendarstellung eines Vektors.- 3 Vektoroperationen.- 4 Ableitung eines Vektors nach einem Parameter.- 5 Anwendungen.- III Funktionen und Kurven.- 1 Grundlegende Begriffe.- 2 Allgemeine Funktionseigenschaften.- 3 Grenzwert und Stetigkeit einer Funktion.- 4 Ganzrationale Funktionen (Polynomfunktionen).- 5 Gebrochenrationale Funktionen.- 6 Potenz- und Wurzelfunktionen.- 7 Trigonometrische Funktionen.- 8 Arkusfunktionen.- 9 Exponentialfunktionen.- 10 Logarithmusfunktionen.- 11 Hyperbelfunktionen.- 12 Areafunktionen.- 13 Kegelschnitte.- 14 Spezielle Kurven.- IV Differentialrechnung.- 1 Differenzierbarkeit einer Funktion.- 2 Eiste Ableitung der elementaren Funktionen (Tabelle).- 3 Ableitungsregeln.- 4 Anwendungen.- V Integralrechnung.- 1 Bestimmtes Integral.- 2 Unbestimmtes Integral.- 3 Integrationsmethoden.- 4 Uneigentliche Integrale.- 5 Anwendungen.- VI Lineare Algebra.- 1 Matrizen.- 2 Determinanten.- 3 Lineare Gleichungssysteme.- VII Unendliche Reihen, Taylor- und Fourier-Reihen.- 1 Unendliche Reihen.- 2 Potenzreihen.- 3 Taylor-Reihen.- 4 Fourier-Reihen.- VIII Komplexe Zahlen und Funktionen.- 1 Darstellungsformen einer komplexen Zahl.- 2 Grundrechenarten für komplexe Zahlen.- 3 Potenzieren.- 4 Radizieren (Wurzelziehen).- 5 Natürlicher Logarithmus einer komplexen Zahl.- 6 Ortskurven.- 7 Komplexe Funktionen.- 8 Anwendungen in der Schwingungslehre.- IXDifferential- und Integralrechnung für Funktionen von mehreren Variablen.- 1 Funktionen von mehreren Variablen und ihre Darstellung.- 2 Partielle Differentiation.- 3 Mehrfachintegrale.- 4 Linien- oder Kurvenintegrale.- X Gewöhnliche Differentialgleichungen.- 1 Grundlegende Begriffe.- 2 Differentialgleichungen 1. Ordnung.- 3 Differentialgleichungen 2. Ordnung.- 4 Anwendungen.- XI Fehler- und Ausgleichsrechnung.- 1 Gaußsche Normalverteilung.- 2 Mittelwert und mittlerer Fehler einer Meßreihe.- 3 Gaußsches Fehlerfortpflanzungsgesetz.- 4 Ausgleichskurven.- Anhang: Integraltafel.- 21 Integrale mit einer Arkusfunktion.- 29 Integrale mit einer Areafunktion.- Sachwortverzeichnis.
Allgemeine Grundlagen aus Algebra, Arithmetik und Geometrie - Vektorrechnung - Funktionen und Kurven - Differentialrechnung - Integralrechnung - Unendliche Reihen, Taylor- und Fourier-Reihen - Lineare Algebra - Komplexe Zahlen und Funktionen - Differential- und Integralrechnung für Funktionen von mehreren Variablen - Gewöhnliche Differentialgleichungen - Fehler- und Ausgleichsrechnung - Laplace-Transformationen - Vektoranalysis - Wahrscheinlichkeitsforschung und Grundlagen der mathematischen Statistik
I Allgemeine Grundlagen aus Algebra, Arithmetik und Geometrie.- 1 Grundlegende Begriffe über Mengen.- 2 Rechnen mit reellen Zahlen.- 3 Elementare (endliche) Reihen.- 4 Gleichungen mit einer Unbekannten.- 5 Lehrsätze aus der elementaren Geometrie.- 6 Ebene geometrische Körper (Planimetrie).- 7 Räumliche geometrische Körper (Stereometrie).- 8 Koordinatensysteme.- II Vektorrechnung.- 1 Grundlegende Begriffe.- 2 Komponentendarstellung eines Vektors.- 3 Vektoroperationen.- 4 Ableitung eines Vektors nach einem Parameter.- 5 Anwendungen.- III Funktionen und Kurven.- 1 Grundlegende Begriffe.- 2 Allgemeine Funktionseigenschaften.- 3 Grenzwert und Stetigkeit einer Funktion.- 4 Ganzrationale Funktionen (Polynomfunktionen).- 5 Gebrochenrationale Funktionen.- 6 Potenz- und Wurzelfunktionen.- 7 Trigonometrische Funktionen.- 8 Arkusfunktionen.- 9 Exponentialfunktionen.- 10 Logarithmusfunktionen.- 11 Hyperbelfunktionen.- 12 Areafunktionen.- 13 Kegelschnitte.- 14 Spezielle Kurven.- IV Differentialrechnung.- 1 Differenzierbarkeit einer Funktion.- 2 Eiste Ableitung der elementaren Funktionen (Tabelle).- 3 Ableitungsregeln.- 4 Anwendungen.- V Integralrechnung.- 1 Bestimmtes Integral.- 2 Unbestimmtes Integral.- 3 Integrationsmethoden.- 4 Uneigentliche Integrale.- 5 Anwendungen.- VI Lineare Algebra.- 1 Matrizen.- 2 Determinanten.- 3 Lineare Gleichungssysteme.- VII Unendliche Reihen, Taylor- und Fourier-Reihen.- 1 Unendliche Reihen.- 2 Potenzreihen.- 3 Taylor-Reihen.- 4 Fourier-Reihen.- VIII Komplexe Zahlen und Funktionen.- 1 Darstellungsformen einer komplexen Zahl.- 2 Grundrechenarten für komplexe Zahlen.- 3 Potenzieren.- 4 Radizieren (Wurzelziehen).- 5 Natürlicher Logarithmus einer komplexen Zahl.- 6 Ortskurven.- 7 Komplexe Funktionen.- 8 Anwendungen in der Schwingungslehre.- IXDifferential- und Integralrechnung für Funktionen von mehreren Variablen.- 1 Funktionen von mehreren Variablen und ihre Darstellung.- 2 Partielle Differentiation.- 3 Mehrfachintegrale.- 4 Linien- oder Kurvenintegrale.- X Gewöhnliche Differentialgleichungen.- 1 Grundlegende Begriffe.- 2 Differentialgleichungen 1. Ordnung.- 3 Differentialgleichungen 2. Ordnung.- 4 Anwendungen.- XI Fehler- und Ausgleichsrechnung.- 1 Gaußsche Normalverteilung.- 2 Mittelwert und mittlerer Fehler einer Meßreihe.- 3 Gaußsches Fehlerfortpflanzungsgesetz.- 4 Ausgleichskurven.- Anhang: Integraltafel.- 21 Integrale mit einer Arkusfunktion.- 29 Integrale mit einer Areafunktion.- Sachwortverzeichnis.