'Dieses Lehrbuch befasst sich mit mathematischen Modellen für dynamische Prozesse aus den Biowissenschaften. Behandelt werden Dynamiken von Populationen, Epidemien, Viren, Prionen und Enzymen, sowie Selektion in der Genetik. Das Buch konzentriert sich auf Modelle, deren Formulierung auf gewöhnliche Differentialgleichungen führt. Schwerpunkte der Kapitel sind sowohl die mathematische Modellierung als auch die Analyse der resultierenden Modelle, sowie die biologische beziehungsweise biochemische Interpretation der Ergebnisse. Übungsaufgaben zu den Kapiteln erleichtern die Vertiefung des Stoffes.
'Dieses Lehrbuch befasst sich mit mathematischen Modellen für dynamische Prozesse aus den Biowissenschaften. Behandelt werden Dynamiken von Populationen, Epidemien, Viren, Prionen und Enzymen, sowie Selektion in der Genetik. Das Buch konzentriert sich auf Modelle, deren Formulierung auf gewöhnliche Differentialgleichungen führt. Schwerpunkte der Kapitel sind sowohl die mathematische Modellierung als auch die Analyse der resultierenden Modelle, sowie die biologische beziehungsweise biochemische Interpretation der Ergebnisse. Übungsaufgaben zu den Kapiteln erleichtern die Vertiefung des Stoffes.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Jan Prüß ist seit 1994 Professor für Angewandte Analysis an der Martin-Luther-Universität Halle-Wittenberg.
Roland Schnaubelt ist seit 2006 Professor für Analysis am Karlsruher Institut für Technologie (KIT).
Dr. Rico Zacher hat 2009/10 eine Vertretungsprofessur am Institut für Analysis und Numerik an der Otto-von-Guericke-Universität Magdeburg inne.
Inhaltsangabe
I Populationen: Logistisches Wachstum.- 2 Interaktionen in Populationen.- Allgemeine Populationsmodelle.- Konkurrenz.- Kooperation.- Volterra-Lotka-Modelle.- II Infektionen: Epidemien ohne Immunisierung.- Epidemien mit Immunisierung.- Epidemien mit Immunverlust.- Endemien.- Impfungen für Endemien.- Ein SIS-Modell mit 2n Klassen.- III Viren und Prionen: Das Modell von May und Nowak.- Immunantwort.- Prionen.- Weitere Endemiemodelle.- IV Paarbildung: Ein Paarbildungsmodell ohne Altersstruktur.- Grundlegende analytische Eigenschaften.- Exponentiallösungen.- Transformation auf den planaren Simplex.- Stabilität von Exponentiallösungen.- Spezialfälle.- V Genetik: Grundbegriffe und das Hardy-Weinberg-Gesetz.- Selektion an einem Genort.- Das Fundamentaltheorem von Fisher.- Konvergenz gegen Equilibria.- Equilibria.- Stabilität der Equilibria.- Der Fall zweier Allele.- Beispiele im Fall dreier Allele.- VI Enzyme: Chemische Kinetik.- Dynamik chemischer Reaktionssysteme.- Enzymreaktionen.- Inhibierung.- Aktivierung.- Biochemische Oszillationen.- Epilog : Kommentare und Literatur.- Altersabhängigkeit.- Räumliche Abhängigkeit.- Größenabhängigkeit.- Ap pendix: Dynamische Systeme : Gewöhnliche Differentialgleichungen.- Flüsse und Halbflüsse.- Ljapunov-Funktionen.- Linearisierung.- Quasimonotone Systeme.- Positive und quasipositive Matrizen.- Mathematica Notebooks.
I Populationen: Logistisches Wachstum.- 2 Interaktionen in Populationen.- Allgemeine Populationsmodelle.- Konkurrenz.- Kooperation.- Volterra-Lotka-Modelle.- II Infektionen: Epidemien ohne Immunisierung.- Epidemien mit Immunisierung.- Epidemien mit Immunverlust.- Endemien.- Impfungen für Endemien.- Ein SIS-Modell mit 2n Klassen.- III Viren und Prionen: Das Modell von May und Nowak.- Immunantwort.- Prionen.- Weitere Endemiemodelle.- IV Paarbildung: Ein Paarbildungsmodell ohne Altersstruktur.- Grundlegende analytische Eigenschaften.- Exponentiallösungen.- Transformation auf den planaren Simplex.- Stabilität von Exponentiallösungen.- Spezialfälle.- V Genetik: Grundbegriffe und das Hardy-Weinberg-Gesetz.- Selektion an einem Genort.- Das Fundamentaltheorem von Fisher.- Konvergenz gegen Equilibria.- Equilibria.- Stabilität der Equilibria.- Der Fall zweier Allele.- Beispiele im Fall dreier Allele.- VI Enzyme: Chemische Kinetik.- Dynamik chemischer Reaktionssysteme.- Enzymreaktionen.- Inhibierung.- Aktivierung.- Biochemische Oszillationen.- Epilog : Kommentare und Literatur.- Altersabhängigkeit.- Räumliche Abhängigkeit.- Größenabhängigkeit.- Ap pendix: Dynamische Systeme : Gewöhnliche Differentialgleichungen.- Flüsse und Halbflüsse.- Ljapunov-Funktionen.- Linearisierung.- Quasimonotone Systeme.- Positive und quasipositive Matrizen.- Mathematica Notebooks.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826