Hans Benker
Mathematische Optimierung mit Computeralgebrasystemen
Einführung für Ingenieure, Naturwissenschaflter und Wirtschaftswissenschaftler unter Anwendung von MATHEMATICA, MAPLE, MATHCAD, MATLAB und EXCEL
Hans Benker
Mathematische Optimierung mit Computeralgebrasystemen
Einführung für Ingenieure, Naturwissenschaflter und Wirtschaftswissenschaftler unter Anwendung von MATHEMATICA, MAPLE, MATHCAD, MATLAB und EXCEL
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bei Problemen in Technik, Natur- und Wirtschaftswissenschaften werden häufig maximale Ergebnisse unter minimalem Aufwand gesucht. Deshalb gewinnt die mathematische Optimierung sowohl für Ingenieure als auch Natur- und Wirtschaftswissenschaftler zunehmend an Bedeutung. Das vorliegende Lehrbuch gibt eine Einführung in die lineare, nichtlineare und vektorielle Optimierung, wobei auch Spezialfälle wie quadratische, parametrische und diskrete Optimierung betrachtet werden. Des Weiteren wird der Gegenstand der Spieltheorie und dynamischen Optimierung skizziert. Im Buch wird auf Beweise verzichtet…mehr
Andere Kunden interessierten sich auch für
- Hans BenkerMathematische Optimierung mit Computeralgebrasystemen79,99 €
- Willi TörnigNumerische Mathematik für Ingenieure und Physiker49,99 €
- Hans BenkerIngenieurmathematik kompakt - Problemlösungen mit MATLAB44,99 €
- Thomas WestermannMathematik für Ingenieure mit Maple49,95 €
- Thomas WestermannMathematische Probleme lösen mit Maple54,99 €
- Ziya SanalMathematik für Ingenieure54,99 €
- Andrei DumaKompaktkurs Mathematik für Ingenieure und Naturwissenschaftler39,99 €
-
-
-
Bei Problemen in Technik, Natur- und Wirtschaftswissenschaften werden häufig maximale Ergebnisse unter minimalem Aufwand gesucht. Deshalb gewinnt die mathematische Optimierung sowohl für Ingenieure als auch Natur- und Wirtschaftswissenschaftler zunehmend an Bedeutung. Das vorliegende Lehrbuch gibt eine Einführung in die lineare, nichtlineare und vektorielle Optimierung, wobei auch Spezialfälle wie quadratische, parametrische und diskrete Optimierung betrachtet werden. Des Weiteren wird der Gegenstand der Spieltheorie und dynamischen Optimierung skizziert. Im Buch wird auf Beweise verzichtet und dafür die Problematik anhand von Beispielen illustriert. Ein zweiter Schwerpunkt des Buches liegt auf der Berechnung der behandelten Optimierungsaufgaben mittels Computer. Hierzu werden die Computeralgebrasysteme MAPLE, MATHEMATICA, MATHCAD und MATLAB und das Tabellenkalkulationsprogramm EXCEL herangezogen und versionsunabhängig erläutert.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-62902-0
- Softcover reprint of the original 1st ed. 2003
- Seitenzahl: 516
- Erscheinungstermin: 14. September 2012
- Deutsch
- Abmessung: 235mm x 155mm x 28mm
- Gewicht: 783g
- ISBN-13: 9783642629020
- ISBN-10: 3642629024
- Artikelnr.: 37031687
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-62902-0
- Softcover reprint of the original 1st ed. 2003
- Seitenzahl: 516
- Erscheinungstermin: 14. September 2012
- Deutsch
- Abmessung: 235mm x 155mm x 28mm
- Gewicht: 783g
- ISBN-13: 9783642629020
- ISBN-10: 3642629024
- Artikelnr.: 37031687
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Einleitung.- 1.1 Optimierung in Technik-, Natur-und Wirtschaftswissenschaften.- 1.2 Optimierung mit dem Computer.- 1.3 Hinweise zur Benutzung des Buches.- 2 Konvexe Mengen.- 2.1 Einführung.- 2.2 Eigenschaften.- 3 Funktionen.- 3.1 Einführung.- 3.2 Allgemeine Funktionen.- 3.3 Mathematische Funktionen.- 3.4 Differentiation.- 3.5 Minimum und Maximum.- 3.6 Konvexe Funktionen.- 3.7 Definition von Funktionen.- 4 Grafische Darstellungen.- 4.1 Kurven.- 4.2 Flächen.- 5 Matrizen.- 5.1 Einführung.- 5.2 Anwendung von Computeralgebrasystemen und EXCEL.- 6 Gleichungen und Ungleichungen.- 6.1 Einführung.- 6.2 Lineare Gleichungen.- 6.3 Lineare Ungleichungen.- 6.4 Nichtlineare Gleichungen und Ungleichungen.- 6.5 Anwendung von Computeralgebrasystemen und EXCEL.- 7 Mathematische Optimierung - Kurzübersicht.- 7.1 Einführung.- 7.2 Extremalaufgaben.- 7.3 Lineare Optimierung.- 7.4 Nichtlineare Optimierung.- 7.5 Ganzzahlige und kombinatorische Optimierung.- 7.6 Parametrische Optimierung.- 7.7 Vektoroptimierung.- 7.8 Stochastische Optimierung.- 7.9 Spieltheorie.- 7.10 Dynamische Optimierung.- 7.11 Variationsrechnung.- 7.12 Optimale Steuerung.- 7.13 Mathematische Optimierung mit dem Computer.- 8 Extremalaufgaben ohne Nebenbedingungen.- 8.1 Einführung.- 8.2 Optimalitätsbedingungen.- 8.3 Numerische Methoden.- 9 Extremalaufgaben mit Gleichungsnebenbedingungen.- 9.1 Einführung.- 9.2 Notwendige Optimalitätsbedingungen.- 9.3 Numerische Methoden.- 10 Lineare Optimierungsaufgaben.- 10.1 Einführung.- 10.2 Eigenschaften.- 10.3 Grafische Lösung.- 10.4 Simplexmethode.- 10.5 Anwendung von Computeralgebrasystemen.- 10.6 Anwendung von EXCEL.- 10.7 Duale Aufgabe.- 10.8 Transportaufgaben.- 10.9 Polynomiale Lösungsmethoden.- 11 Nichtlineare Optimierungsaufgaben.- 11.1 Einführung.- 11.2 GrafischeLösung.- 11.3 Optimalitätsbedingungen.- 11.4 Spezialfälle.- 11.5 Dualität.- 11.6 Numerische Methoden.- 12 Quadratische Optimierungsaufgaben.- 12.1 Einführung.- 12.2 Lösungsmethoden.- 12.3 Anwendung von Computeralgebrasystemen.- 12.4 Anwendung von EXCEL.- 13 Ausgleichsaufgaben - Quadratmittelaufgaben.- 13.1 Einführung.- 13.2 Lösungsmethoden.- 13.3 Anwendung von Computeralgebrasystemen.- 13.4 Anwendung von EXCEL.- 14 Ganzahlige und kombinatorische Optimierungsaufgaben.- 14.1 Einführung.- 14.2 Lösungsmethoden.- 14.3 Kombinatorische Optimierung.- 14.4 Anwendung von Computeralgebrasystemen und EXCEL.- 15 Parametrische Optimierungsaufgaben.- 15.1 Einführung.- 15.2 Lineare Aufgaben.- 15.3 Anwendung von Computeralgebrasystemen und EXCEL.- 16 Vektoroptimierungsaufgaben.- 16.1 Einführung.- 16.2 Lösungsbegriffe und Lösungsmethoden.- 16.3 Anwendung von Computeralgebrasystemen und EXCEL.- 17 Spieltheorie.- 17.1 Einführung.- 17.2 Matrixspiele.- 17.3 Anwendung von Computeralgebrasystemen und EXCEL.- 18 Dynamische Optimierung.- 18.1 Einführung.- 18.2 N-stufige Optimierungsaufgaben.- 18.3 Bellmansches Optimalitätsprinzip.- 18.4 Anwendung von Computeralgebrasystemen und EXCEL.- 19 Zusammenfassung.- Anhang A: MAPLE und MATHEMATICA.- A.1 Aufbau und Benutzeroberfläche.- A.1.1 MAPLE.- A.1.2 MATHEMATICA.- A.2 Zusatzprogramme zur Optimierung.- Anhang B: MATHCAD und MATLAB.- B.1 Aufbau und Benutzeroberfläche.- B.1.1 MATHCAD.- B.1.2 MAILAB.- B.2 Funktionsdateien in MAILAB.- B.3 Zusatzprogramme zur Optimierung.- Anhang C: EXCEL.- C.1 Aufbau und Benutzeroberfläche.- C.2 SOLVER.- Anhang D: Programmierung mit MAPLE, MATHEMATICA,MATHCAD und MATLAB.- D.1 Zuweisungenv.- D.2 Verzweigungen.- D.3 Schleifen.- D.4 Programmstruktur und Beispiel.- Sachwortverzeichnis.
1 Einleitung.- 1.1 Optimierung in Technik-, Natur-und Wirtschaftswissenschaften.- 1.2 Optimierung mit dem Computer.- 1.3 Hinweise zur Benutzung des Buches.- 2 Konvexe Mengen.- 2.1 Einführung.- 2.2 Eigenschaften.- 3 Funktionen.- 3.1 Einführung.- 3.2 Allgemeine Funktionen.- 3.3 Mathematische Funktionen.- 3.4 Differentiation.- 3.5 Minimum und Maximum.- 3.6 Konvexe Funktionen.- 3.7 Definition von Funktionen.- 4 Grafische Darstellungen.- 4.1 Kurven.- 4.2 Flächen.- 5 Matrizen.- 5.1 Einführung.- 5.2 Anwendung von Computeralgebrasystemen und EXCEL.- 6 Gleichungen und Ungleichungen.- 6.1 Einführung.- 6.2 Lineare Gleichungen.- 6.3 Lineare Ungleichungen.- 6.4 Nichtlineare Gleichungen und Ungleichungen.- 6.5 Anwendung von Computeralgebrasystemen und EXCEL.- 7 Mathematische Optimierung - Kurzübersicht.- 7.1 Einführung.- 7.2 Extremalaufgaben.- 7.3 Lineare Optimierung.- 7.4 Nichtlineare Optimierung.- 7.5 Ganzzahlige und kombinatorische Optimierung.- 7.6 Parametrische Optimierung.- 7.7 Vektoroptimierung.- 7.8 Stochastische Optimierung.- 7.9 Spieltheorie.- 7.10 Dynamische Optimierung.- 7.11 Variationsrechnung.- 7.12 Optimale Steuerung.- 7.13 Mathematische Optimierung mit dem Computer.- 8 Extremalaufgaben ohne Nebenbedingungen.- 8.1 Einführung.- 8.2 Optimalitätsbedingungen.- 8.3 Numerische Methoden.- 9 Extremalaufgaben mit Gleichungsnebenbedingungen.- 9.1 Einführung.- 9.2 Notwendige Optimalitätsbedingungen.- 9.3 Numerische Methoden.- 10 Lineare Optimierungsaufgaben.- 10.1 Einführung.- 10.2 Eigenschaften.- 10.3 Grafische Lösung.- 10.4 Simplexmethode.- 10.5 Anwendung von Computeralgebrasystemen.- 10.6 Anwendung von EXCEL.- 10.7 Duale Aufgabe.- 10.8 Transportaufgaben.- 10.9 Polynomiale Lösungsmethoden.- 11 Nichtlineare Optimierungsaufgaben.- 11.1 Einführung.- 11.2 GrafischeLösung.- 11.3 Optimalitätsbedingungen.- 11.4 Spezialfälle.- 11.5 Dualität.- 11.6 Numerische Methoden.- 12 Quadratische Optimierungsaufgaben.- 12.1 Einführung.- 12.2 Lösungsmethoden.- 12.3 Anwendung von Computeralgebrasystemen.- 12.4 Anwendung von EXCEL.- 13 Ausgleichsaufgaben - Quadratmittelaufgaben.- 13.1 Einführung.- 13.2 Lösungsmethoden.- 13.3 Anwendung von Computeralgebrasystemen.- 13.4 Anwendung von EXCEL.- 14 Ganzahlige und kombinatorische Optimierungsaufgaben.- 14.1 Einführung.- 14.2 Lösungsmethoden.- 14.3 Kombinatorische Optimierung.- 14.4 Anwendung von Computeralgebrasystemen und EXCEL.- 15 Parametrische Optimierungsaufgaben.- 15.1 Einführung.- 15.2 Lineare Aufgaben.- 15.3 Anwendung von Computeralgebrasystemen und EXCEL.- 16 Vektoroptimierungsaufgaben.- 16.1 Einführung.- 16.2 Lösungsbegriffe und Lösungsmethoden.- 16.3 Anwendung von Computeralgebrasystemen und EXCEL.- 17 Spieltheorie.- 17.1 Einführung.- 17.2 Matrixspiele.- 17.3 Anwendung von Computeralgebrasystemen und EXCEL.- 18 Dynamische Optimierung.- 18.1 Einführung.- 18.2 N-stufige Optimierungsaufgaben.- 18.3 Bellmansches Optimalitätsprinzip.- 18.4 Anwendung von Computeralgebrasystemen und EXCEL.- 19 Zusammenfassung.- Anhang A: MAPLE und MATHEMATICA.- A.1 Aufbau und Benutzeroberfläche.- A.1.1 MAPLE.- A.1.2 MATHEMATICA.- A.2 Zusatzprogramme zur Optimierung.- Anhang B: MATHCAD und MATLAB.- B.1 Aufbau und Benutzeroberfläche.- B.1.1 MATHCAD.- B.1.2 MAILAB.- B.2 Funktionsdateien in MAILAB.- B.3 Zusatzprogramme zur Optimierung.- Anhang C: EXCEL.- C.1 Aufbau und Benutzeroberfläche.- C.2 SOLVER.- Anhang D: Programmierung mit MAPLE, MATHEMATICA,MATHCAD und MATLAB.- D.1 Zuweisungenv.- D.2 Verzweigungen.- D.3 Schleifen.- D.4 Programmstruktur und Beispiel.- Sachwortverzeichnis.