279,00 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Gebundenes Buch

For most mathematicians and many mathematical physicists the name Erich Kähler is strongly tied to important geometric notions such as Kähler metrics, Kähler manifolds and Kähler groups. They all go back to a paper of 14 pages written in 1932. This, however, is just a small part of Kähler's many outstanding achievements which cover an unusually wide area: From celestial mechanics he got into complex function theory, differential equations, analytic and complex geometry with differential forms, and then into his main topic, i.e. arithmetic geometry where he constructed a system of notions which…mehr

Produktbeschreibung
For most mathematicians and many mathematical physicists the name Erich Kähler is strongly tied to important geometric notions such as Kähler metrics, Kähler manifolds and Kähler groups. They all go back to a paper of 14 pages written in 1932. This, however, is just a small part of Kähler's many outstanding achievements which cover an unusually wide area: From celestial mechanics he got into complex function theory, differential equations, analytic and complex geometry with differential forms, and then into his main topic, i.e. arithmetic geometry where he constructed a system of notions which is a precursor and, in large parts, equivalent to the now used system of Grothendieck and Dieudonne. His principal interest was in finding the unity in the variety of mathematical themes and establishing thus mathematics as a universal language.

In this volume Kähler's mathematical papers are collected following a "Tribute to Herrn Erich Kähler" by S. S. Chern, an overview of Kähler's life data by A. Bohm and R. Berndt, and a Survey of his Mathematical Work by the editors. There are also comments and reports on the developments of the main topics of Kähler's work, starting by W. Neumann's paper on the topology of hypersurface singularities, J.-P. Bourguignon's report on Kähler geometry and, among others by Berndt, Bost, Deitmar, Ekeland, Kunz and Krieg, up to A. Nicolai's essay "Supersymmetry, Kähler geometry and Beyond".

As Kähler's interest went beyond the realm of mathematics and mathematical physics, any picture of his work would be incomplete without touching his work reaching into other regions. So a short appendix reproduces three of his articles concerning his vision of mathematics as a universal Theme together with an essay by K. Maurin giving an "Approach to the philosophy of Erich Kähler".
Für die meisten Mathematiker und für viele mathematische Physiker ist der Name Erich Kähler eng verbunden mit wichtigen Begriffen der Geometrie wie zum Beispiel Kähler-Metrik, Kähler-Mannigfaltigkeiten und Kähler-Gruppen. Diese Begriffe gehen alle auf ein 14-seitiges Papier aus dem Jahr 1932 zurück. Dabei handelt es sich jedoch nur um einen sehr kleinen Teil der vielen herausragenden Leistungen Kählers, die ein ungewöhnlich breites Spektrum umfassen: Von der Himmelsmechanik gelangte er zur komplexen Funktionentheorie, zu Differenzialgleichungen, zu analytischer und komplexer Geometrie mit Differenzialformen und schließlich zu seinem eigentlichen Hauptthema, der arithmetischen Geometrie, in der er ein Begriffssystem schuf, das der Vorläufer des heute verwendeten Systems von Grothendieck und Dieudonné ist und in weiten Teilen mit diesem übereinstimmt. Sein Hauptinteresse war es, die Gemeinsamkeiten in der Vielfalt der mathematischen Themen zu finden und so Mathematik als universelle Sprache zu etablieren.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Rolf Berndt and Oswald Riemenschneider are Professors at theMathematical Seminar of theUniversity of Hamburg, Germany.
Rezensionen
"This careful and well documented edition of the work of Erich Kähler is a most welcome addition to the mathematical literature."
Jean Mawhin in: Bulletin of the Belgian Mathematical Society 4/2005