32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

In matrix acidizing, the goal is to dissolve minerals in the rock to increase well productivity. This is accomplished by injecting an application-specific solution of acid into the formation at a pressure between the pore pressure and fracture pressure. A hydrochloric acid solution is used in carbonate reservoirs, which actually dissolves the calcite rock matrix in the form of conductive channels called wormholes. These wormholes propagate from the wellbore out into the reservoir, bypassing the damaged zone. In matrix acidizing of carbonates, there are four parameters that affect performance:…mehr

Produktbeschreibung
In matrix acidizing, the goal is to dissolve minerals in the rock to increase well productivity. This is accomplished by injecting an application-specific solution of acid into the formation at a pressure between the pore pressure and fracture pressure. A hydrochloric acid solution is used in carbonate reservoirs, which actually dissolves the calcite rock matrix in the form of conductive channels called wormholes. These wormholes propagate from the wellbore out into the reservoir, bypassing the damaged zone. In matrix acidizing of carbonates, there are four parameters that affect performance: the concentration of calcite present, injection rate of the acid, reaction type, and heterogeneity. Of these parameters, this paper will focus on how rock heterogeneity affects performance. To do this, a coreflood and acidizing apparatus was used to acidize heterogeneous limestone core samples. Rock characterizations and volumetric measurements were considered with the results from these experiments, which made it possible to correlate and quantify the results with rock and volume parameters.
Autorenporträt
Ryan Keys completó su Maestría en Ciencias en Ingeniería de Petróleo en 2009 de la Universidad Texas A&M. También tiene una licenciatura en ingeniería mecánica de la Universidad de Texas en Austin. Ryan trabaja actualmente para Object Reservoir, Inc como ingeniero de yacimientos especializado en recursos de gas no convencionales.