This book on mechanical microsensors is based on a course organized by the Swiss Foundation for Research in Microtechnology (FSRM) in Neuchatel, Swit zerland, and developed and taught by the authors. Support by FSRM is herewith gratefully acknowledged. This book attempts to serve two purposes. First it gives an overview on me chanical microsensors (sensors for pressure, force, acceleration, angular rate and fluid flow, realized by silicon micromachining). Second, it serves as a textbook for engineers to give them a comprehensive introduction on the basic design issues of these sensors. Engineers active in sensor design are usually educated either in electrical engineering or mechanical engineering. These classical educa tional pro grams do not prepare the engineer for the challenging task of sensor design since sensors are instruments typically bridging the disciplines: one needs a rather deep understanding of both mechanics and electronics. Accordingly, the book contains discussion of the basic engineering sciences relevant to mechanical sensors, hopefully in a way that it is accessible for all colours of engineers. Engi rd th neering students in their 3 or 4 year should have enough knowledge to be able to follow the arguments presented in this book. In this sense, this book should be useful as textbook for students in courses on mechanical microsensors (as is CUf rently being done at the University ofTwente).
MECHANICAL MICROSENSORS provides a comprehensive description of the various design techniques required for silicon micromachining of sensors. This is a very well written book which has a pleasant balance of mathematical, physics and engineering principles, that make this book suitable for physicists, chemistry, electrical and mechanical engineers. -SENSOR REVIEW "Of particular value is the fact that the authors go further than the description of the silicon sensor elements and also present solutions on how to interface these sensors to the surrounding world - electronically in the chapter on 'Electronic Interfacing' as well as physically in the chapter on 'Packaging'." To summarize, this textbook gives a comprehensive overview of mechanical microsensors which is especially well suited for students in courses on mechanical microsensors, but is also valuable for people in research and industry with an interest in this exciting and growing field." -MEASUREMENT SCIENCE AND TECHNOLOGY.
"Mechanical Microsensors provides a comprehensive description of the various design techniques required for silicon micromachining of sensors. This is a very well written book which has a pleasant balance of mathematical, physics and engineering principles, that make this book suitable for physicists, chemistry, electrical and mechanical engineers."
--SENSOR REVIEW
"Of particular value is the fact that the authors go further than the description of the silicon sensor elements and also present solutions on how to interface these sensors to the surrounding world - electronically in the chapter on 'Electronic Interfacing' as well as physically in the chapter on 'Packaging'. To summarize, this textbook gives a comprehensive overview of mechanical microsensors which is especially well suited for students in courses on mechanical microsensors, but is also valuable for people in research and industry with an interest in this exciting and growing field."
-MEASUREMENT SCIENCE AND TECHNOLOGY
--SENSOR REVIEW
"Of particular value is the fact that the authors go further than the description of the silicon sensor elements and also present solutions on how to interface these sensors to the surrounding world - electronically in the chapter on 'Electronic Interfacing' as well as physically in the chapter on 'Packaging'. To summarize, this textbook gives a comprehensive overview of mechanical microsensors which is especially well suited for students in courses on mechanical microsensors, but is also valuable for people in research and industry with an interest in this exciting and growing field."
-MEASUREMENT SCIENCE AND TECHNOLOGY
"Mechanical Microsensors provides a comprehensive description of the various design techniques required for silicon micromachining of sensors. This is a very well written book which has a pleasant balance of mathematical, physics and engineering principles, that make this book suitable for physicists, chemistry, electrical and mechanical engineers." --SENSOR REVIEW "Of particular value is the fact that the authors go further than the description of the silicon sensor elements and also present solutions on how to interface these sensors to the surrounding world - electronically in the chapter on 'Electronic Interfacing' as well as physically in the chapter on 'Packaging'. To summarize, this textbook gives a comprehensive overview of mechanical microsensors which is especially well suited for students in courses on mechanical microsensors, but is also valuable for people in research and industry with an interest in this exciting and growing field." -MEASUREMENT SCIENCE AND TECHNOLOGY