This book treats the mechanical behavior of one-dimensional sandwich structures, a typicaloncept in the context of lightweight design. Such structures are composed of different constituent (e.g., layers) in order to achieve overall properties, which are better than for a single component alone. This book covers the basic mechanical load cases, i.e., tension/compression, bending, and shear. Based on this knowledge, different failure modes, i.e., plastic yielding, and global and local instabilities are investigated. In addition, an introduction to classic optimization problems, i.e., the…mehr
This book treats the mechanical behavior of one-dimensional sandwich structures, a typicaloncept in the context of lightweight design. Such structures are composed of different constituent (e.g., layers) in order to achieve overall properties, which are better than for a single component alone. This book covers the basic mechanical load cases, i.e., tension/compression, bending, and shear. Based on this knowledge, different failure modes, i.e., plastic yielding, and global and local instabilities are investigated. In addition, an introduction to classic optimization problems, i.e., the formulation of an objective function (e.g., the weight of a structure) and corresponding restrictions, is included. The consideration here is limited to one- or two-dimensional design spaces, i.e., with a maximum of two design variables. For such simple cases, the minimum of the objective function can often be determined using analytical or graphical methods.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Andreas Öchsner is Full Professor for Lightweight Design and Structural Simulation at Esslingen University of Applied Sciences, Germany. Having obtained a Dipl.-Ing. degree in Aeronautical Engineering at the University of Stuttgart (1997), Germany, he served as Research and Teaching Assistant at the University of Erlangen-Nuremberg from 1997 to 2003, while working to complete his Doctor of Engineering Sciences (Dr.-Ing.) degree. From 2003 to 2006, he was Assistant Professor at the Department of Mechanical Engineering and Head of the Cellular Metals Group affiliated with the University of Aveiro, Portugal. He spent seven years (2007-2013) as Full Professor at the Department of Applied Mechanics, Technical University of Malaysia, where he was also Head of the Advanced Materials and Structure Lab. From 2014 to 2017, he was Full Professor at the School of Engineering, Griffith University, Australia, and Leader of the Mechanical Engineering Program (Head of Discipline and Program Director).
Inhaltsangabe
Introduction and Motivation.- Basic Mechanical Load Cases.- Limit Load.- Optimization.- Short Solutions to the Supplementary Problems.- Appendix.