An excellent source for graduate students and researchers in solid mechanics and materials science, Mechanics of Solids and Materials covers a wide range of topics. The book begins with a review of vectors, tensors, basic integral theorems, and Fourier series. In later chapters, it delves into the subjects of nonlinear continuum mechanics, elasticity, plasticity, and biomechanics. The books thorough examination of these topics makes it a definitive resource for those pursuing an advanced study of solid mechanics and materials science.
An excellent source for graduate students and researchers in solid mechanics and materials science, Mechanics of Solids and Materials covers a wide range of topics. The book begins with a review of vectors, tensors, basic integral theorems, and Fourier series. In later chapters, it delves into the subjects of nonlinear continuum mechanics, elasticity, plasticity, and biomechanics. The books thorough examination of these topics makes it a definitive resource for those pursuing an advanced study of solid mechanics and materials science.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Robert J. Asaro was awarded his Ph.D. in Materials Science With Distinction from Stanford University in 1972. He was a Professor of Engineering at Brown University from 1975-1989, and at the University of California, San Diego since 1989. Professor Asaro has led programs involved with the design, fabrication, and full-scale structural testing of large composite structures including high performance ships and marine civil structures. His list of publications includes more than 170 research papers in the leading professional journals and conference proceedings. He received the NSF Special Creativity Award for his research in 1983 and 1987. Professor Asaro also received the TMS Champion H. Mathewson Gold Medal in 1991. He has made fundamental contributions to the theory of crystal plasticity and to dislocation theory. He served as a founding member of the Advisory Committee for NSF's Office of Advanced Computing that founded the Supercomputer Program in the U.S. He has also served on the NSF Materials Advisory Committee. He has been an affiliate with Los Alamos National Laboratory for over 20 years and has served as consultant to Sandia National Laboratory. Professor Asaro has been recognized by ISI as a highly cited author in Materials Science. Vlado A. Lubarda received his Ph.D. in Mechanical Engineering from Stanford University in 1980. He was a Professor at the University of Montenegro from 1980-1989, a Fulbright Fellow and Visiting Associate Professor at Brown University from 1989-1991, and at Arizona State University from 1992-1997. Since 1998, he has been an Adjunct Professor of Applied Mechanics at the University of California, San Diego. Dr. Lubarda has made significant contributions to phenomenological theories of large deformation elastoplasticity, dislocation theory, damage and micromechanics, and biomechanics. He is the author of more than 100 journal and conference publications and two books: Strength of Materials (1985) and Elastoplasticity Theory (2002). He has served as a research panelist for NSF and as a reviewer for international journals of mechanics, materials science, and applied mathematics. Professor Lubarda was elected in 2000 to the Montenegrin Academy of Sciences and Arts. He is also a recipient of the 2004 Distinguished Teaching Award from the University of California.
Inhaltsangabe
Part I. Mathematical Preliminaries: 1. Vectors and tensors 2. Basic integral theorems 3. Fourier series and Fourier integrals Part II. Continuum Mechanics: 4. Kinematics of continuum 5. Kinetics of continuum 6. Thermodynamics of continuum 7. Nonlinear elasticity Part III. Linear Elasticity: 8. Governing equations 9. Elastic beam problems 10. Solutions in polar coordinates 11. Torsion and bending of prismatic rods 12. Semi-infinite media 13. Isotropic 3-D solutions 14. Anisotropic 3-D solutions 15. Plane contact problems 16. Deformation of plates Part IV. Micromechanics: 17. Dislocations and cracks: elementary treatment 18. Dislocations in anisotropic media 19. Cracks in anisotropic media 20. The Inclusion Problem 21. Forces and energy in elastic systems 22. Micropolar elasticity Part V. Thin Films and Interfaces: 23. Dislocations in biomaterials 24. Strain relaxation in thin films 25. Stability of planar interfaces Part VI. Plasticity and Viscoplasticity: 26. Phenomenological plasticity 27. Micromechanics of crystallographic slip 28. Crystal plasticity 29. The nature of crystalline deformation: localized plastic deformation 30. Polycrystal plasticity 31. Laminate plasticity Part VII. Biomechanics: 32. Mechanics of a growing mass 33. Constitutive relations for membranes Part VIII. Solved Problems: 34. Solved problems for chapters 1-33.
Part I. Mathematical Preliminaries: 1. Vectors and tensors 2. Basic integral theorems 3. Fourier series and Fourier integrals Part II. Continuum Mechanics: 4. Kinematics of continuum 5. Kinetics of continuum 6. Thermodynamics of continuum 7. Nonlinear elasticity Part III. Linear Elasticity: 8. Governing equations 9. Elastic beam problems 10. Solutions in polar coordinates 11. Torsion and bending of prismatic rods 12. Semi-infinite media 13. Isotropic 3-D solutions 14. Anisotropic 3-D solutions 15. Plane contact problems 16. Deformation of plates Part IV. Micromechanics: 17. Dislocations and cracks: elementary treatment 18. Dislocations in anisotropic media 19. Cracks in anisotropic media 20. The Inclusion Problem 21. Forces and energy in elastic systems 22. Micropolar elasticity Part V. Thin Films and Interfaces: 23. Dislocations in biomaterials 24. Strain relaxation in thin films 25. Stability of planar interfaces Part VI. Plasticity and Viscoplasticity: 26. Phenomenological plasticity 27. Micromechanics of crystallographic slip 28. Crystal plasticity 29. The nature of crystalline deformation: localized plastic deformation 30. Polycrystal plasticity 31. Laminate plasticity Part VII. Biomechanics: 32. Mechanics of a growing mass 33. Constitutive relations for membranes Part VIII. Solved Problems: 34. Solved problems for chapters 1-33.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497