Trevor F. Cox
Medical Statistics for Cancer Studies
Trevor F. Cox
Medical Statistics for Cancer Studies
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Cancer is a dreaded disease. One in two people will be diagnosed with cancer within their lifetime. Medical Statistics for Cancer Studies shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It gives some background in cancer biology and genetics, followed by detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics. It includes lots of examples using real data from the author's many years of experience working…mehr
Andere Kunden interessierten sich auch für
- Catherine LegrandAdvanced Survival Models40,99 €
- Göran BroströmEvent History Analysis with R77,99 €
- David CollettModelling Survival Data in Medical Research71,99 €
- Avishek NagSurvival Analysis with Python83,99 €
- Goran Brostrom (Professor Emeritus, Umea University, Sweden)Event History Analysis with R71,99 €
- Mark ChangAdaptive Design Theory and Implementation Using SAS and R54,99 €
- Jianrong WuSingle-Arm Phase II Survival Trial Design71,99 €
-
-
-
Cancer is a dreaded disease. One in two people will be diagnosed with cancer within their lifetime. Medical Statistics for Cancer Studies shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It gives some background in cancer biology and genetics, followed by detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics. It includes lots of examples using real data from the author's many years of experience working in a cancer clinical trials unit.
Features:
A broad and accessible overview of statistical methods in cancer researchNecessary background in cancer biology and geneticsDetails of statistical methodology with minimal algebraMany examples using real data from cancer clinical trialsAppendix giving statistics revision.
Features:
A broad and accessible overview of statistical methods in cancer researchNecessary background in cancer biology and geneticsDetails of statistical methodology with minimal algebraMany examples using real data from cancer clinical trialsAppendix giving statistics revision.
Produktdetails
- Produktdetails
- Chapman & Hall/CRC Biostatistics Series
- Verlag: Chapman and Hall/CRC / Taylor & Francis
- Seitenzahl: 334
- Erscheinungstermin: 23. Juni 2022
- Englisch
- Abmessung: 234mm x 156mm x 19mm
- Gewicht: 780g
- ISBN-13: 9780367486150
- ISBN-10: 0367486156
- Artikelnr.: 63264629
- Chapman & Hall/CRC Biostatistics Series
- Verlag: Chapman and Hall/CRC / Taylor & Francis
- Seitenzahl: 334
- Erscheinungstermin: 23. Juni 2022
- Englisch
- Abmessung: 234mm x 156mm x 19mm
- Gewicht: 780g
- ISBN-13: 9780367486150
- ISBN-10: 0367486156
- Artikelnr.: 63264629
Trevor F. Cox is retired from Liverpool Cancer Trials Unit, University of Liverpool, UK
1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2. Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA, Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis. 3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4. Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial. 4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model. 5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT) Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6. Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation. 6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7. Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5. Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1. How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis. 8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics. 10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3. Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2. Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA, Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis. 3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4. Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial. 4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model. 5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT) Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6. Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation. 6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7. Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5. Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1. How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis. 8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics. 10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3. Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.