Trevor F. Cox
Medical Statistics for Cancer Studies
Trevor F. Cox
Medical Statistics for Cancer Studies
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This textbook shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It provides detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics.
Andere Kunden interessierten sich auch für
- Iftekhar KhanEconomic Evaluation of Cancer Drugs72,99 €
- Arul EarnestEssentials of a Successful Biostatistical Collaboration69,99 €
- Jay HersonData and Safety Monitoring Committees in Clinical Trials72,99 €
- Nicholas J. HortonUsing R and RStudio for Data Management, Statistical Analysis, and Graphics69,99 €
- Richard ChinAdaptive and Flexible Clinical Trials88,99 €
- Steven E RigdonMonitoring the Health of Populations by Tracking Disease Outbreaks66,99 €
- William P. FoxModeling Change and Uncertainty86,99 €
-
-
-
This textbook shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It provides detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Chapman and Hall/CRC
- Seitenzahl: 334
- Erscheinungstermin: 26. August 2024
- Englisch
- Abmessung: 234mm x 156mm x 18mm
- Gewicht: 509g
- ISBN-13: 9781032285870
- ISBN-10: 1032285877
- Artikelnr.: 71236274
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Chapman and Hall/CRC
- Seitenzahl: 334
- Erscheinungstermin: 26. August 2024
- Englisch
- Abmessung: 234mm x 156mm x 18mm
- Gewicht: 509g
- ISBN-13: 9781032285870
- ISBN-10: 1032285877
- Artikelnr.: 71236274
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Trevor F. Cox is retired from Liverpool Cancer Trials Unit, University of Liverpool, UK
1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2. Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA, Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis. 3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4. Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial. 4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model. 5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT) Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6. Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation. 6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7. Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5. Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1. How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis. 8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics. 10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3. Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2. Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA, Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis. 3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4. Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial. 4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model. 5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT) Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6. Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation. 6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7. Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5. Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1. How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis. 8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics. 10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3. Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.