72,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
36 °P sammeln
  • Broschiertes Buch

Osmotic energy can be effectively harvested through pressure retarded osmosis (PRO) which is the most widely investigated technology due to its greater efficiency and higher power density output and effective membranes are the heart of the PRO technology. This book will cover a broad range of topics, including PRO membranes, fouling, module fabrication, process design, process operation and maintenance. It summarizes the progress in PRO researches in the last decade, and points out the directions for future R&D and commercialization of PRO. It will be of great interest to membrane researcher,…mehr

Produktbeschreibung
Osmotic energy can be effectively harvested through pressure retarded osmosis (PRO) which is the most widely investigated technology due to its greater efficiency and higher power density output and effective membranes are the heart of the PRO technology. This book will cover a broad range of topics, including PRO membranes, fouling, module fabrication, process design, process operation and maintenance. It summarizes the progress in PRO researches in the last decade, and points out the directions for future R&D and commercialization of PRO. It will be of great interest to membrane researcher, company and operators to understand and get insights into the state-of-the-art PRO technologies.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
> 70 patents (including 46 US patents, 34 regional and Singapore patents), and 350 conference papers. He has the world highest number of publications in J. Membrane Science (Impact Factor = 6.578). So far, he has trained and produced 68 PhD, 23 MEng and 120 post-doctors. His H-index = 89 (Scopus) or 103 (Google Scholar); Number of citations > 31,486 (Scopus) and > 40,577 (Google Scholar) (June 30, 2018). Dr. Chun Feng Wan is a research fellow at the department of Chemical and Biomolecular Engineering, National University of Singapore (NUS). He obtained his bachelor (1st Honor) and PhD in chemical engineering from in Prof Chung's membrane research group in NUS. His research focuses on membrane synthesis, membrane module production, process design and pilot testing for osmotic power generation by pressure retarded osmosis. He has been awarded the Chinese out-standing PhD student study abroad, AICHE-SLS young researcher award and Forbes 30 under 30 Asia. He has first-authored 8 and co-authored 12 research articles in Journal of Membrane Science, Applied Energy and other leading research journals. His H-index in 11 (Scopus)12 (Google Scholar) and citation is 458 (Scopus) or 548 (Google Scholar) (June 30 2018).