- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Technology/Engineering/Mechanical A bestselling MEMS text. now better than ever. An engineering design approach to Microelectromechanical Systems, MEMS and Microsystems remains the only available text to cover both the electrical and the mechanical aspects of the technology.
Aktuell und didaktisch ausgereift, bietet der Band Anwendern und fortgeschrittenen Studierenden einen ausgezeichneten Zugang zu den Themenbereichen MEMS und Mikrosysteme. Berücksichtigt werden sowohl Aspekte der Elektrik und Elektronik als auch die mechanische Seite der MEMS.
Andere Kunden interessierten sich auch für
- Nano and Micromachining186,99 €
- Ki Bang LeePrinciples of Microelectromechanical Systems210,99 €
- Salvatore BaglioScaling Issues and Design of MEMS155,99 €
- Julian W. GardnerMicrosensors, Mems, and Smart Devices195,99 €
- Vijay K. VaradanSmart Material Systems and MEMS178,99 €
- Han-Xiong LiSystem Design and Control Inte111,99 €
- Robust Design Methodology for Reliability179,99 €
-
-
-
Technology/Engineering/Mechanical A bestselling MEMS text. now better than ever. An engineering design approach to Microelectromechanical Systems, MEMS and Microsystems remains the only available text to cover both the electrical and the mechanical aspects of the technology.
Aktuell und didaktisch ausgereift, bietet der Band Anwendern und fortgeschrittenen Studierenden einen ausgezeichneten Zugang zu den Themenbereichen MEMS und Mikrosysteme. Berücksichtigt werden sowohl Aspekte der Elektrik und Elektronik als auch die mechanische Seite der MEMS.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Aktuell und didaktisch ausgereift, bietet der Band Anwendern und fortgeschrittenen Studierenden einen ausgezeichneten Zugang zu den Themenbereichen MEMS und Mikrosysteme. Berücksichtigt werden sowohl Aspekte der Elektrik und Elektronik als auch die mechanische Seite der MEMS.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 2. Aufl.
- Seitenzahl: 576
- Erscheinungstermin: 1. März 2008
- Englisch
- Abmessung: 241mm x 196mm x 35mm
- Gewicht: 1115g
- ISBN-13: 9780470083017
- ISBN-10: 0470083018
- Artikelnr.: 23330070
- Verlag: Wiley & Sons
- 2. Aufl.
- Seitenzahl: 576
- Erscheinungstermin: 1. März 2008
- Englisch
- Abmessung: 241mm x 196mm x 35mm
- Gewicht: 1115g
- ISBN-13: 9780470083017
- ISBN-10: 0470083018
- Artikelnr.: 23330070
Tai-Ran Hsu, PhD, is a Professor in the Department of Mechanical and Aerospace Engineering, San Jose State University, California. Dr. Hsu is the author of the earlier edition of this book, which is considered one of the bestselling textbooks on the subject of MEMS.
Preface xvii
Preface To The First Edition xix
Suggestions To Instructors xxiii
1 OVERVIEW OF MEMS AND MICROSYSTEMS 1
1.1 MEMS and Microsystems 1
1.2 Typical MEMS and Microsystems Products 7
1.2.1 Microgears 7
1.2.2 Micromotors 7
1.2.3 Microturbines 7
1.2.4 Micro-Optical Components 7
1.3 Evolution of Microfabrication 10
1.4 Microsystems and Microelectronics 11
1.5 Multidisciplinary Nature of Microsystems Design and Manufacture 13
1.6 Microsystems and Miniaturization 15
1.7 Application of Microsystems in Automotive Industry 21
1.7.1 Safety 22
1.7.2 Engine and Power Trains 24
1.7.3 Comfort and Convenience 24
1.7.4 Vehicle Diagnostics and Health Monitoring 24
1.7.5 Future Automotive Applications 26
1.8 Application of Microsystems in Other Industries 27
1.8.1 Application in Health Care Industry 27
1.8.2 Application in Aerospace Industry 28
1.8.3 Application in Industrial Products 29
1.8.4 Application in Consumer Products 29
1.8.5 Application in Telecommunications 30
1.9 Markets for Microsystems 30
Problems 32
2 WORKING PRINCIPLES OF MICROSYSTEMS 35
2.1 Introduction 35
2.2 Microsensors 35
2.2.1 Acoustic Wave Sensors 36
2.2.2 Biomedical and Biosensors 37
2.2.3 Chemical Sensors 40
2.2.4 Optical Sensors 42
2.2.5 Pressure Sensors 44
2.2.6 Thermal Sensors 50
2.3 Microactuation 53
2.3.1 Actuation Using Thermal Forces 53
2.3.2 Actuation Using Shape Memory Alloys 54
2.3.3 Actuation Using Piezoelectric Effect 54
2.3.4 Actuation Using Electrostatic Forces 55
2.4 MEMS with Microactuators 59
2.4.1 Microgrippers 59
2.4.2 Miniature Microphones 61
2.4.3 Micromotors 64
2.5 Microactuators with Mechanical Inertia 66
2.5.1 Microaccelerometers 66
2.5.2 Microgyroscopes 70
2.6 Microfluidics 72
2.6.1 Microvalves 74
2.6.2 Micropumps 75
2.6.3 Micro-Heat Pipes 75
Problems 77
3 ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION 83
3.1 Introduction 83
3.2 Atomic Structure of Matter 83
3.3 Ions and Ionization 86
3.4 Molecular Theory of Matter and Intermolecular Forces 87
3.5 Doping of Semiconductors 89
3.6 Diffusion Process 92
3.7 Plasma Physics 99
3.8 Electrochemistry 100
3.8.1 Electrolysis 101
3.8.2 Electrohydrodynamics 102
Problems 105
4 ENGINEERING MECHANICS FOR MICROSYSTEMS DESIGN 109
4.1 Introduction 109
4.2 Static Bending of Thin Plates 110
4.2.1 Bending of Circular Plates with Edge Fixed 112
4.2.2 Bending of Rectangular Plates with All Edges Fixed 114
4.2.3 Bending of Square Plates with Edges Fixed 116
4.3 Mechanical Vibration 119
4.3.1 General Formulation 119
4.3.2 Resonant Vibration 123
4.3.3 Microaccelerometers 125
4.3.4 Design Theory of Accelerometers 126
4.3.5 Damping Coefficients 134
4.3.6 Resonant Microsensors 144
4.4 Thermomechanics 150
4.4.1 Thermal Effects on Mechanical Strength of Materials 150
4.4.2 Creep Deformation 150
4.4.3 Thermal Stresses 152
4.5 Fracture Mechanics 165
4.5.1 Stress Intensity Factors 166
4.5.2 Fracture Toughness 167
4.5.3 Interfacial Fracture Mechanics 169
4.6 Thin-Film Mechanics 172
4.7 Overview of Finite Element Stress Analysis 173
4.7.1 The Principle 173
4.7.2 Engineering Applications 175
4.7.3 Input Information to FEA 175
4.7.4 Output from FEA 175
4.7.5 Graphical Output 176
4.7.6 General Remarks 176
Problems 178
5 THERMOFLUID ENGINEERING AND MICROSYSTEMS DESIGN 183
5.1 Introduction 183
5.2 Overview of Basics of Fluid Mechanics at Macro- and Mesoscales 184
5.2.1 Viscosity of Fluids 184
5.2.2 Streamlines and Stream Tubes 186
5.2.3 Control Volumes and Control Surfaces 187
5.2.4 Flow Patterns and Reynolds Number 187
5.3 Basic Equations in Continuum Fluid Dynamics 187
5.3.1 Continuity Equation 187
5.3.2 Momentum Equation 190
5.3.3 Equation of Motion 192
5.4 Laminar Fluid Flow in Circular Conduits 195
5.5 Computational Fluid Dynamics 198
5.6 Incompressible Fluid Flow in Microconduits 199
5.6.1 Surface Tension 199
5.6.2 Capillary Effect 201
5.6.3 Micropumping 203
5.7 Overview of Heat Conduction in Solids 204
5.7.1 General Principle of Heat Conduction 204
5.7.2 Fourier Law of Heat Conduction 205
5.7.3 Heat Conduction Equation 207
5.7.4 Newton's Cooling Law 208
5.7.5 Solid-Fluid Interaction 209
5.7.6 Boundary Conditions 210
5.8 Heat Conduction in Multilayered Thin Films 215
5.9 Heat Conduction in Solids at Submicrometer Scale 220
Problems 221
6 SCALING LAWS IN MINIATURIZATION 227
6.1 Introduction to Scaling 227
6.2 Scaling in Geometry 228
6.3 Scaling in Rigid-Body Dynamics 230
6.3.1 Scaling in Dynamic Forces 230
6.3.2 Trimmer Force Scaling Vector 231
6.4 Scaling in Electrostatic Forces 233
6.5 Scaling of Electromagnetic Forces 235
6.6 Scaling in Electricity 237
6.7 Scaling in Fluid Mechanics 238
6.8 Scaling in Heat Transfer 242
6.8.1 Scaling in Heat Conduction 242
6.8.2 Scaling in Heat Convection 243
Problems 244
7 MATERIALS FOR MEMS AND MICROSYSTEMS 245
7.1 Introduction 245
7.2 Substrates and Wafers 245
7.3 Active Substrate Materials 247
7.4 Silicon as Substrate Material 247
7.4.1 Ideal Substrate for MEMS 247
7.4.2 Single-Crystal Silicon and Wafers 248
7.4.3 Crystal Structure 250
7.4.4 Miller Indices 253
7.4.5 Mechanical Properties of Silicon 256
7.5 Silicon Compounds 258
7.5.1 Silicon Dioxide 258
7.5.2 Silicon Carbide 259
7.5.3 Silicon Nitride 259
7.5.4 Polycrystalline Silicon 260
7.6 Silicon Piezoresistors 261
7.7 Gallium Arsenide 266
7.8 Quartz 267
7.9 Piezoelectric Crystals 268
7.10 Polymers 274
7.10.1 Polymers as Industrial Materials 274
7.10.2 Polymers for MEMS and Microsystems 275
7.10.3 Conductive Polymers 275
7.10.4 Langmuir-Blodgett Film 277
7.10.5 SU-8 Photoresists 278
7.11 Packaging Materials 280
Problems 281
8 MICROSYSTEMS FABRICATION PROCESSES 285
8.1 Introduction 285
8.2 Photolithography 285
8.2.1 Overview 286
8.2.2 Photoresists and Application 286
8.2.3 Light Sources 288
8.2.4 Photoresist Development 289
8.2.5 Photoresist Removal and Postbaking 289
8.3 Ion Implantation 289
8.4 Diffusion 292
8.5 Oxidation 295
8.5.1 Thermal Oxidation 295
8.5.2 Silicon Dioxide 296
8.5.3 Thermal Oxidation Rates 296
8.5.4 Oxide Thickness by Color 300
8.6 Chemical Vapor Deposition 301
8.6.1 Working Principle of CVD 301
8.6.2 Chemical Reactions in CVD 302
8.6.3 Rate of Deposition 303
8.6.4 Enhanced CVD 310
8.7 Physical Vapor Deposition: Sputtering 312
8.8 Deposition by Epitaxy 313
8.9 Etching 315
8.9.1 Chemical Etching 316
8.9.2 Plasma Etching 317
8.10 Summary of Microfabrication 317
Problems 318
9 OVERVIEW OF MICROMANUFACTURING 323
9.1 Introduction 323
9.2 Bulk Micromanufacturing 324
9.2.1 Overview of Etching 324
9.2.2 Isotropic and Anisotropic Etching 325
9.2.3 Wet Etchants 326
9.2.4 Etch Stop 328
9.2.5 Dry Etching 329
9.2.6 Comparison of Wet versus Dry Etching 333
9.3 Surface Micromachining 333
9.3.1 Description 333
9.3.2 Process 335
9.3.3 Mechanical Problems Associated with Surface Micromachining 336
9.4 LIGA Process 338
9.4.1 Description 339
9.4.2 Materials for Substrates and Photoresists 340
9.4.3 Electroplating 341
9.4.4 SLIGA Process 342
9.5 Summary of Micromanufacturing 343
9.5.1 Bulk Micromanufacturing 343
9.5.2 Surface Micromachining 343
9.5.3 LIGA Process 343
Problems 344
10 MICROSYSTEMS DESIGN 349
10.1 Introduction 349
10.2 Design Considerations 350
10.2.1 Design Constraints 351
10.2.2 Selection of Materials 352
10.2.3 Selection of Manufacturing Processes 354
10.2.4 Selection of Signal Transduction 355
10.2.5 Electromechanical System 358
10.2.6 Packaging 358
10.3 Process Design 358
10.3.1 Photolithography 359
10.3.2 Thin-Film Fabrications 360
10.3.3 Geometry Shaping 362
10.4 Mechanical Design 362
10.4.1 Geometry of MEMS Components 362
10.4.2 Thermomechanical Loading 362
10.4.3 Thermomechanical Stress Analysis 363
10.4.4 Dynamic Analysis 364
10.4.5 Interfacial Fracture Analysis 369
10.5 Mechanical Design Using Finite Element Method 369
10.5.1 Finite Element Formulation 370
10.5.2 Simulation of Microfabrication Processes 375
10.6 Design of Silicon Die of a Micropressure Sensor 378
10.7 Design of Microfluidic Network Systems 382
10.7.1 Fluid Resistance in Microchannels 383
10.7.2 Capillary Electrophoresis Network Systems 386
10.7.3 Mathematical Modeling of Capillary Electrophoresis Network Systems
388
10.7.4 Design Case: Capillary Electrophoresis Network System 389
10.7.5 Capillary Electrophoresis in Curved Channels 392
10.7.6 Issues in Design of CE Processes 394
10.8 Computer-Aided Design 395
10.8.1 Why CAD? 395
10.8.2 What Is in a CAD Package for Microsystems? 395
10.8.3 How to Choose a CAD Package 398
10.8.4 Design Case Using CAD 398
Problems 402
11 ASSEMBLY, PACKAGING, AND TESTING OF MICROSYSTEMS 407
11.1 Introduction 407
11.2 Overview of Microassembly 409
11.3 High Costs of Microassembly 410
11.4 Microassembly Processes 411
11.5 Major Technical Problems in Microassembly 413
11.5.1 Tolerances in Microassembly 414
11.5.2 Tools and Fixtures 417
11.5.3 Contact Problems in Microassembly Tools 417
11.6 Microassembly Work Cells 419
11.7 Challenging Issues in Microassembly 421
11.8 Overview of Microsystems Packaging 422
11.9 General Considerations in Packaging Design 424
11.10 Three Levels of Microsystems Packaging 424
11.10.1 Die-Level Packaging 424
11.10.2 Device-Level Packaging 425
11.10.3 System-Level Packaging 427
11.11 Interfaces in Microsystems Packaging 427
11.12 Essential Packaging Technologies 428
11.13 Die Preparation 429
11.14 Surface Bonding 429
11.14.1 Adhesives 430
11.14.2 Eutectic Bonding 431
11.14.3 Anodic Bonding 432
11.14.4 Silicon Fusion Bonding 434
11.14.5 Overview of Surface Bonding Techniques 434
11.14.6 Silicon-on-Insulator: Special Surface Bonding Techniques 435
11.15 Wire Bonding 437
11.16 Sealing and Encapsulation 439
11.16.1 Integrated Encapsulation Processes 440
11.16.2 Sealing by Wafer Bonding 441
11.16.3 Vacuum Sealing and Encapsulation 442
11.17 Three-Dimensional Packaging 443
11.18 Selection of Packaging Materials 444
11.19 Signal Mapping and Transduction 447
11.19.1 Typical Electrical Signals in Microsystems 447
11.19.2 Measurement of Resistance 447
11.19.3 Signal Mapping and Transduction in Pressure Sensors 448
11.19.4 Capacitance Measurements 450
11.20 Design Case on Pressure Sensor Packaging 451
11.21 Reliability in MEMS Packaging 455
11.22 Testing for Reliability 456
Problems 458
12 INTRODUCTION TO NANOSCALE ENGINEERING 465
12.1 Introduction 465
12.2 Micro- and Nanoscale Technologies 467
12.3 General Principle of Nanofabrication 468
12.4 Nanoproducts 471
12.5 Application of Nanoproducts 474
12.6 Quantum Physics 478
12.7 Molecular Dynamics 479
12.8 Fluid Flow in Submicrometer- and Nanoscales 482
12.8.1 Rarefied Gas 482
12.8.2 Knudsen and Mach Numbers 482
12.8.3 Modeling of Micro- and Nanoscale Gas Flow 483
12.9 Heat Conduction at Nanoscale 486
12.9.1 Heat Transmission at Submicrometer- and Nanoscale 486
12.9.2 Thermal Conductivity of Thin Films 489
12.9.3 Heat Conduction Equation for Thin Films 490
12.10 Measurement of Thermal Conductivity 491
12.11 Challenges in Nanoscale Engineering 497
12.11.1 Nanopatterning in Nanofabrication 498
12.11.2 Nanoassembly 500
12.11.3 New Materials for Nanoelectromechanical Systems (NEMS) 500
12.11.4 Analytical Modeling 501
12.11.5 Testing 502
12.12 Social Impacts of Nanoscale Engineering 502
Problems 503
References 509
Appendix 1 Recommended Units For Thermophysical Quantities 523
Appendix 2 Conversion Of Units 525
Index 527
Preface To The First Edition xix
Suggestions To Instructors xxiii
1 OVERVIEW OF MEMS AND MICROSYSTEMS 1
1.1 MEMS and Microsystems 1
1.2 Typical MEMS and Microsystems Products 7
1.2.1 Microgears 7
1.2.2 Micromotors 7
1.2.3 Microturbines 7
1.2.4 Micro-Optical Components 7
1.3 Evolution of Microfabrication 10
1.4 Microsystems and Microelectronics 11
1.5 Multidisciplinary Nature of Microsystems Design and Manufacture 13
1.6 Microsystems and Miniaturization 15
1.7 Application of Microsystems in Automotive Industry 21
1.7.1 Safety 22
1.7.2 Engine and Power Trains 24
1.7.3 Comfort and Convenience 24
1.7.4 Vehicle Diagnostics and Health Monitoring 24
1.7.5 Future Automotive Applications 26
1.8 Application of Microsystems in Other Industries 27
1.8.1 Application in Health Care Industry 27
1.8.2 Application in Aerospace Industry 28
1.8.3 Application in Industrial Products 29
1.8.4 Application in Consumer Products 29
1.8.5 Application in Telecommunications 30
1.9 Markets for Microsystems 30
Problems 32
2 WORKING PRINCIPLES OF MICROSYSTEMS 35
2.1 Introduction 35
2.2 Microsensors 35
2.2.1 Acoustic Wave Sensors 36
2.2.2 Biomedical and Biosensors 37
2.2.3 Chemical Sensors 40
2.2.4 Optical Sensors 42
2.2.5 Pressure Sensors 44
2.2.6 Thermal Sensors 50
2.3 Microactuation 53
2.3.1 Actuation Using Thermal Forces 53
2.3.2 Actuation Using Shape Memory Alloys 54
2.3.3 Actuation Using Piezoelectric Effect 54
2.3.4 Actuation Using Electrostatic Forces 55
2.4 MEMS with Microactuators 59
2.4.1 Microgrippers 59
2.4.2 Miniature Microphones 61
2.4.3 Micromotors 64
2.5 Microactuators with Mechanical Inertia 66
2.5.1 Microaccelerometers 66
2.5.2 Microgyroscopes 70
2.6 Microfluidics 72
2.6.1 Microvalves 74
2.6.2 Micropumps 75
2.6.3 Micro-Heat Pipes 75
Problems 77
3 ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION 83
3.1 Introduction 83
3.2 Atomic Structure of Matter 83
3.3 Ions and Ionization 86
3.4 Molecular Theory of Matter and Intermolecular Forces 87
3.5 Doping of Semiconductors 89
3.6 Diffusion Process 92
3.7 Plasma Physics 99
3.8 Electrochemistry 100
3.8.1 Electrolysis 101
3.8.2 Electrohydrodynamics 102
Problems 105
4 ENGINEERING MECHANICS FOR MICROSYSTEMS DESIGN 109
4.1 Introduction 109
4.2 Static Bending of Thin Plates 110
4.2.1 Bending of Circular Plates with Edge Fixed 112
4.2.2 Bending of Rectangular Plates with All Edges Fixed 114
4.2.3 Bending of Square Plates with Edges Fixed 116
4.3 Mechanical Vibration 119
4.3.1 General Formulation 119
4.3.2 Resonant Vibration 123
4.3.3 Microaccelerometers 125
4.3.4 Design Theory of Accelerometers 126
4.3.5 Damping Coefficients 134
4.3.6 Resonant Microsensors 144
4.4 Thermomechanics 150
4.4.1 Thermal Effects on Mechanical Strength of Materials 150
4.4.2 Creep Deformation 150
4.4.3 Thermal Stresses 152
4.5 Fracture Mechanics 165
4.5.1 Stress Intensity Factors 166
4.5.2 Fracture Toughness 167
4.5.3 Interfacial Fracture Mechanics 169
4.6 Thin-Film Mechanics 172
4.7 Overview of Finite Element Stress Analysis 173
4.7.1 The Principle 173
4.7.2 Engineering Applications 175
4.7.3 Input Information to FEA 175
4.7.4 Output from FEA 175
4.7.5 Graphical Output 176
4.7.6 General Remarks 176
Problems 178
5 THERMOFLUID ENGINEERING AND MICROSYSTEMS DESIGN 183
5.1 Introduction 183
5.2 Overview of Basics of Fluid Mechanics at Macro- and Mesoscales 184
5.2.1 Viscosity of Fluids 184
5.2.2 Streamlines and Stream Tubes 186
5.2.3 Control Volumes and Control Surfaces 187
5.2.4 Flow Patterns and Reynolds Number 187
5.3 Basic Equations in Continuum Fluid Dynamics 187
5.3.1 Continuity Equation 187
5.3.2 Momentum Equation 190
5.3.3 Equation of Motion 192
5.4 Laminar Fluid Flow in Circular Conduits 195
5.5 Computational Fluid Dynamics 198
5.6 Incompressible Fluid Flow in Microconduits 199
5.6.1 Surface Tension 199
5.6.2 Capillary Effect 201
5.6.3 Micropumping 203
5.7 Overview of Heat Conduction in Solids 204
5.7.1 General Principle of Heat Conduction 204
5.7.2 Fourier Law of Heat Conduction 205
5.7.3 Heat Conduction Equation 207
5.7.4 Newton's Cooling Law 208
5.7.5 Solid-Fluid Interaction 209
5.7.6 Boundary Conditions 210
5.8 Heat Conduction in Multilayered Thin Films 215
5.9 Heat Conduction in Solids at Submicrometer Scale 220
Problems 221
6 SCALING LAWS IN MINIATURIZATION 227
6.1 Introduction to Scaling 227
6.2 Scaling in Geometry 228
6.3 Scaling in Rigid-Body Dynamics 230
6.3.1 Scaling in Dynamic Forces 230
6.3.2 Trimmer Force Scaling Vector 231
6.4 Scaling in Electrostatic Forces 233
6.5 Scaling of Electromagnetic Forces 235
6.6 Scaling in Electricity 237
6.7 Scaling in Fluid Mechanics 238
6.8 Scaling in Heat Transfer 242
6.8.1 Scaling in Heat Conduction 242
6.8.2 Scaling in Heat Convection 243
Problems 244
7 MATERIALS FOR MEMS AND MICROSYSTEMS 245
7.1 Introduction 245
7.2 Substrates and Wafers 245
7.3 Active Substrate Materials 247
7.4 Silicon as Substrate Material 247
7.4.1 Ideal Substrate for MEMS 247
7.4.2 Single-Crystal Silicon and Wafers 248
7.4.3 Crystal Structure 250
7.4.4 Miller Indices 253
7.4.5 Mechanical Properties of Silicon 256
7.5 Silicon Compounds 258
7.5.1 Silicon Dioxide 258
7.5.2 Silicon Carbide 259
7.5.3 Silicon Nitride 259
7.5.4 Polycrystalline Silicon 260
7.6 Silicon Piezoresistors 261
7.7 Gallium Arsenide 266
7.8 Quartz 267
7.9 Piezoelectric Crystals 268
7.10 Polymers 274
7.10.1 Polymers as Industrial Materials 274
7.10.2 Polymers for MEMS and Microsystems 275
7.10.3 Conductive Polymers 275
7.10.4 Langmuir-Blodgett Film 277
7.10.5 SU-8 Photoresists 278
7.11 Packaging Materials 280
Problems 281
8 MICROSYSTEMS FABRICATION PROCESSES 285
8.1 Introduction 285
8.2 Photolithography 285
8.2.1 Overview 286
8.2.2 Photoresists and Application 286
8.2.3 Light Sources 288
8.2.4 Photoresist Development 289
8.2.5 Photoresist Removal and Postbaking 289
8.3 Ion Implantation 289
8.4 Diffusion 292
8.5 Oxidation 295
8.5.1 Thermal Oxidation 295
8.5.2 Silicon Dioxide 296
8.5.3 Thermal Oxidation Rates 296
8.5.4 Oxide Thickness by Color 300
8.6 Chemical Vapor Deposition 301
8.6.1 Working Principle of CVD 301
8.6.2 Chemical Reactions in CVD 302
8.6.3 Rate of Deposition 303
8.6.4 Enhanced CVD 310
8.7 Physical Vapor Deposition: Sputtering 312
8.8 Deposition by Epitaxy 313
8.9 Etching 315
8.9.1 Chemical Etching 316
8.9.2 Plasma Etching 317
8.10 Summary of Microfabrication 317
Problems 318
9 OVERVIEW OF MICROMANUFACTURING 323
9.1 Introduction 323
9.2 Bulk Micromanufacturing 324
9.2.1 Overview of Etching 324
9.2.2 Isotropic and Anisotropic Etching 325
9.2.3 Wet Etchants 326
9.2.4 Etch Stop 328
9.2.5 Dry Etching 329
9.2.6 Comparison of Wet versus Dry Etching 333
9.3 Surface Micromachining 333
9.3.1 Description 333
9.3.2 Process 335
9.3.3 Mechanical Problems Associated with Surface Micromachining 336
9.4 LIGA Process 338
9.4.1 Description 339
9.4.2 Materials for Substrates and Photoresists 340
9.4.3 Electroplating 341
9.4.4 SLIGA Process 342
9.5 Summary of Micromanufacturing 343
9.5.1 Bulk Micromanufacturing 343
9.5.2 Surface Micromachining 343
9.5.3 LIGA Process 343
Problems 344
10 MICROSYSTEMS DESIGN 349
10.1 Introduction 349
10.2 Design Considerations 350
10.2.1 Design Constraints 351
10.2.2 Selection of Materials 352
10.2.3 Selection of Manufacturing Processes 354
10.2.4 Selection of Signal Transduction 355
10.2.5 Electromechanical System 358
10.2.6 Packaging 358
10.3 Process Design 358
10.3.1 Photolithography 359
10.3.2 Thin-Film Fabrications 360
10.3.3 Geometry Shaping 362
10.4 Mechanical Design 362
10.4.1 Geometry of MEMS Components 362
10.4.2 Thermomechanical Loading 362
10.4.3 Thermomechanical Stress Analysis 363
10.4.4 Dynamic Analysis 364
10.4.5 Interfacial Fracture Analysis 369
10.5 Mechanical Design Using Finite Element Method 369
10.5.1 Finite Element Formulation 370
10.5.2 Simulation of Microfabrication Processes 375
10.6 Design of Silicon Die of a Micropressure Sensor 378
10.7 Design of Microfluidic Network Systems 382
10.7.1 Fluid Resistance in Microchannels 383
10.7.2 Capillary Electrophoresis Network Systems 386
10.7.3 Mathematical Modeling of Capillary Electrophoresis Network Systems
388
10.7.4 Design Case: Capillary Electrophoresis Network System 389
10.7.5 Capillary Electrophoresis in Curved Channels 392
10.7.6 Issues in Design of CE Processes 394
10.8 Computer-Aided Design 395
10.8.1 Why CAD? 395
10.8.2 What Is in a CAD Package for Microsystems? 395
10.8.3 How to Choose a CAD Package 398
10.8.4 Design Case Using CAD 398
Problems 402
11 ASSEMBLY, PACKAGING, AND TESTING OF MICROSYSTEMS 407
11.1 Introduction 407
11.2 Overview of Microassembly 409
11.3 High Costs of Microassembly 410
11.4 Microassembly Processes 411
11.5 Major Technical Problems in Microassembly 413
11.5.1 Tolerances in Microassembly 414
11.5.2 Tools and Fixtures 417
11.5.3 Contact Problems in Microassembly Tools 417
11.6 Microassembly Work Cells 419
11.7 Challenging Issues in Microassembly 421
11.8 Overview of Microsystems Packaging 422
11.9 General Considerations in Packaging Design 424
11.10 Three Levels of Microsystems Packaging 424
11.10.1 Die-Level Packaging 424
11.10.2 Device-Level Packaging 425
11.10.3 System-Level Packaging 427
11.11 Interfaces in Microsystems Packaging 427
11.12 Essential Packaging Technologies 428
11.13 Die Preparation 429
11.14 Surface Bonding 429
11.14.1 Adhesives 430
11.14.2 Eutectic Bonding 431
11.14.3 Anodic Bonding 432
11.14.4 Silicon Fusion Bonding 434
11.14.5 Overview of Surface Bonding Techniques 434
11.14.6 Silicon-on-Insulator: Special Surface Bonding Techniques 435
11.15 Wire Bonding 437
11.16 Sealing and Encapsulation 439
11.16.1 Integrated Encapsulation Processes 440
11.16.2 Sealing by Wafer Bonding 441
11.16.3 Vacuum Sealing and Encapsulation 442
11.17 Three-Dimensional Packaging 443
11.18 Selection of Packaging Materials 444
11.19 Signal Mapping and Transduction 447
11.19.1 Typical Electrical Signals in Microsystems 447
11.19.2 Measurement of Resistance 447
11.19.3 Signal Mapping and Transduction in Pressure Sensors 448
11.19.4 Capacitance Measurements 450
11.20 Design Case on Pressure Sensor Packaging 451
11.21 Reliability in MEMS Packaging 455
11.22 Testing for Reliability 456
Problems 458
12 INTRODUCTION TO NANOSCALE ENGINEERING 465
12.1 Introduction 465
12.2 Micro- and Nanoscale Technologies 467
12.3 General Principle of Nanofabrication 468
12.4 Nanoproducts 471
12.5 Application of Nanoproducts 474
12.6 Quantum Physics 478
12.7 Molecular Dynamics 479
12.8 Fluid Flow in Submicrometer- and Nanoscales 482
12.8.1 Rarefied Gas 482
12.8.2 Knudsen and Mach Numbers 482
12.8.3 Modeling of Micro- and Nanoscale Gas Flow 483
12.9 Heat Conduction at Nanoscale 486
12.9.1 Heat Transmission at Submicrometer- and Nanoscale 486
12.9.2 Thermal Conductivity of Thin Films 489
12.9.3 Heat Conduction Equation for Thin Films 490
12.10 Measurement of Thermal Conductivity 491
12.11 Challenges in Nanoscale Engineering 497
12.11.1 Nanopatterning in Nanofabrication 498
12.11.2 Nanoassembly 500
12.11.3 New Materials for Nanoelectromechanical Systems (NEMS) 500
12.11.4 Analytical Modeling 501
12.11.5 Testing 502
12.12 Social Impacts of Nanoscale Engineering 502
Problems 503
References 509
Appendix 1 Recommended Units For Thermophysical Quantities 523
Appendix 2 Conversion Of Units 525
Index 527
Preface xvii
Preface To The First Edition xix
Suggestions To Instructors xxiii
1 OVERVIEW OF MEMS AND MICROSYSTEMS 1
1.1 MEMS and Microsystems 1
1.2 Typical MEMS and Microsystems Products 7
1.2.1 Microgears 7
1.2.2 Micromotors 7
1.2.3 Microturbines 7
1.2.4 Micro-Optical Components 7
1.3 Evolution of Microfabrication 10
1.4 Microsystems and Microelectronics 11
1.5 Multidisciplinary Nature of Microsystems Design and Manufacture 13
1.6 Microsystems and Miniaturization 15
1.7 Application of Microsystems in Automotive Industry 21
1.7.1 Safety 22
1.7.2 Engine and Power Trains 24
1.7.3 Comfort and Convenience 24
1.7.4 Vehicle Diagnostics and Health Monitoring 24
1.7.5 Future Automotive Applications 26
1.8 Application of Microsystems in Other Industries 27
1.8.1 Application in Health Care Industry 27
1.8.2 Application in Aerospace Industry 28
1.8.3 Application in Industrial Products 29
1.8.4 Application in Consumer Products 29
1.8.5 Application in Telecommunications 30
1.9 Markets for Microsystems 30
Problems 32
2 WORKING PRINCIPLES OF MICROSYSTEMS 35
2.1 Introduction 35
2.2 Microsensors 35
2.2.1 Acoustic Wave Sensors 36
2.2.2 Biomedical and Biosensors 37
2.2.3 Chemical Sensors 40
2.2.4 Optical Sensors 42
2.2.5 Pressure Sensors 44
2.2.6 Thermal Sensors 50
2.3 Microactuation 53
2.3.1 Actuation Using Thermal Forces 53
2.3.2 Actuation Using Shape Memory Alloys 54
2.3.3 Actuation Using Piezoelectric Effect 54
2.3.4 Actuation Using Electrostatic Forces 55
2.4 MEMS with Microactuators 59
2.4.1 Microgrippers 59
2.4.2 Miniature Microphones 61
2.4.3 Micromotors 64
2.5 Microactuators with Mechanical Inertia 66
2.5.1 Microaccelerometers 66
2.5.2 Microgyroscopes 70
2.6 Microfluidics 72
2.6.1 Microvalves 74
2.6.2 Micropumps 75
2.6.3 Micro-Heat Pipes 75
Problems 77
3 ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION 83
3.1 Introduction 83
3.2 Atomic Structure of Matter 83
3.3 Ions and Ionization 86
3.4 Molecular Theory of Matter and Intermolecular Forces 87
3.5 Doping of Semiconductors 89
3.6 Diffusion Process 92
3.7 Plasma Physics 99
3.8 Electrochemistry 100
3.8.1 Electrolysis 101
3.8.2 Electrohydrodynamics 102
Problems 105
4 ENGINEERING MECHANICS FOR MICROSYSTEMS DESIGN 109
4.1 Introduction 109
4.2 Static Bending of Thin Plates 110
4.2.1 Bending of Circular Plates with Edge Fixed 112
4.2.2 Bending of Rectangular Plates with All Edges Fixed 114
4.2.3 Bending of Square Plates with Edges Fixed 116
4.3 Mechanical Vibration 119
4.3.1 General Formulation 119
4.3.2 Resonant Vibration 123
4.3.3 Microaccelerometers 125
4.3.4 Design Theory of Accelerometers 126
4.3.5 Damping Coefficients 134
4.3.6 Resonant Microsensors 144
4.4 Thermomechanics 150
4.4.1 Thermal Effects on Mechanical Strength of Materials 150
4.4.2 Creep Deformation 150
4.4.3 Thermal Stresses 152
4.5 Fracture Mechanics 165
4.5.1 Stress Intensity Factors 166
4.5.2 Fracture Toughness 167
4.5.3 Interfacial Fracture Mechanics 169
4.6 Thin-Film Mechanics 172
4.7 Overview of Finite Element Stress Analysis 173
4.7.1 The Principle 173
4.7.2 Engineering Applications 175
4.7.3 Input Information to FEA 175
4.7.4 Output from FEA 175
4.7.5 Graphical Output 176
4.7.6 General Remarks 176
Problems 178
5 THERMOFLUID ENGINEERING AND MICROSYSTEMS DESIGN 183
5.1 Introduction 183
5.2 Overview of Basics of Fluid Mechanics at Macro- and Mesoscales 184
5.2.1 Viscosity of Fluids 184
5.2.2 Streamlines and Stream Tubes 186
5.2.3 Control Volumes and Control Surfaces 187
5.2.4 Flow Patterns and Reynolds Number 187
5.3 Basic Equations in Continuum Fluid Dynamics 187
5.3.1 Continuity Equation 187
5.3.2 Momentum Equation 190
5.3.3 Equation of Motion 192
5.4 Laminar Fluid Flow in Circular Conduits 195
5.5 Computational Fluid Dynamics 198
5.6 Incompressible Fluid Flow in Microconduits 199
5.6.1 Surface Tension 199
5.6.2 Capillary Effect 201
5.6.3 Micropumping 203
5.7 Overview of Heat Conduction in Solids 204
5.7.1 General Principle of Heat Conduction 204
5.7.2 Fourier Law of Heat Conduction 205
5.7.3 Heat Conduction Equation 207
5.7.4 Newton's Cooling Law 208
5.7.5 Solid-Fluid Interaction 209
5.7.6 Boundary Conditions 210
5.8 Heat Conduction in Multilayered Thin Films 215
5.9 Heat Conduction in Solids at Submicrometer Scale 220
Problems 221
6 SCALING LAWS IN MINIATURIZATION 227
6.1 Introduction to Scaling 227
6.2 Scaling in Geometry 228
6.3 Scaling in Rigid-Body Dynamics 230
6.3.1 Scaling in Dynamic Forces 230
6.3.2 Trimmer Force Scaling Vector 231
6.4 Scaling in Electrostatic Forces 233
6.5 Scaling of Electromagnetic Forces 235
6.6 Scaling in Electricity 237
6.7 Scaling in Fluid Mechanics 238
6.8 Scaling in Heat Transfer 242
6.8.1 Scaling in Heat Conduction 242
6.8.2 Scaling in Heat Convection 243
Problems 244
7 MATERIALS FOR MEMS AND MICROSYSTEMS 245
7.1 Introduction 245
7.2 Substrates and Wafers 245
7.3 Active Substrate Materials 247
7.4 Silicon as Substrate Material 247
7.4.1 Ideal Substrate for MEMS 247
7.4.2 Single-Crystal Silicon and Wafers 248
7.4.3 Crystal Structure 250
7.4.4 Miller Indices 253
7.4.5 Mechanical Properties of Silicon 256
7.5 Silicon Compounds 258
7.5.1 Silicon Dioxide 258
7.5.2 Silicon Carbide 259
7.5.3 Silicon Nitride 259
7.5.4 Polycrystalline Silicon 260
7.6 Silicon Piezoresistors 261
7.7 Gallium Arsenide 266
7.8 Quartz 267
7.9 Piezoelectric Crystals 268
7.10 Polymers 274
7.10.1 Polymers as Industrial Materials 274
7.10.2 Polymers for MEMS and Microsystems 275
7.10.3 Conductive Polymers 275
7.10.4 Langmuir-Blodgett Film 277
7.10.5 SU-8 Photoresists 278
7.11 Packaging Materials 280
Problems 281
8 MICROSYSTEMS FABRICATION PROCESSES 285
8.1 Introduction 285
8.2 Photolithography 285
8.2.1 Overview 286
8.2.2 Photoresists and Application 286
8.2.3 Light Sources 288
8.2.4 Photoresist Development 289
8.2.5 Photoresist Removal and Postbaking 289
8.3 Ion Implantation 289
8.4 Diffusion 292
8.5 Oxidation 295
8.5.1 Thermal Oxidation 295
8.5.2 Silicon Dioxide 296
8.5.3 Thermal Oxidation Rates 296
8.5.4 Oxide Thickness by Color 300
8.6 Chemical Vapor Deposition 301
8.6.1 Working Principle of CVD 301
8.6.2 Chemical Reactions in CVD 302
8.6.3 Rate of Deposition 303
8.6.4 Enhanced CVD 310
8.7 Physical Vapor Deposition: Sputtering 312
8.8 Deposition by Epitaxy 313
8.9 Etching 315
8.9.1 Chemical Etching 316
8.9.2 Plasma Etching 317
8.10 Summary of Microfabrication 317
Problems 318
9 OVERVIEW OF MICROMANUFACTURING 323
9.1 Introduction 323
9.2 Bulk Micromanufacturing 324
9.2.1 Overview of Etching 324
9.2.2 Isotropic and Anisotropic Etching 325
9.2.3 Wet Etchants 326
9.2.4 Etch Stop 328
9.2.5 Dry Etching 329
9.2.6 Comparison of Wet versus Dry Etching 333
9.3 Surface Micromachining 333
9.3.1 Description 333
9.3.2 Process 335
9.3.3 Mechanical Problems Associated with Surface Micromachining 336
9.4 LIGA Process 338
9.4.1 Description 339
9.4.2 Materials for Substrates and Photoresists 340
9.4.3 Electroplating 341
9.4.4 SLIGA Process 342
9.5 Summary of Micromanufacturing 343
9.5.1 Bulk Micromanufacturing 343
9.5.2 Surface Micromachining 343
9.5.3 LIGA Process 343
Problems 344
10 MICROSYSTEMS DESIGN 349
10.1 Introduction 349
10.2 Design Considerations 350
10.2.1 Design Constraints 351
10.2.2 Selection of Materials 352
10.2.3 Selection of Manufacturing Processes 354
10.2.4 Selection of Signal Transduction 355
10.2.5 Electromechanical System 358
10.2.6 Packaging 358
10.3 Process Design 358
10.3.1 Photolithography 359
10.3.2 Thin-Film Fabrications 360
10.3.3 Geometry Shaping 362
10.4 Mechanical Design 362
10.4.1 Geometry of MEMS Components 362
10.4.2 Thermomechanical Loading 362
10.4.3 Thermomechanical Stress Analysis 363
10.4.4 Dynamic Analysis 364
10.4.5 Interfacial Fracture Analysis 369
10.5 Mechanical Design Using Finite Element Method 369
10.5.1 Finite Element Formulation 370
10.5.2 Simulation of Microfabrication Processes 375
10.6 Design of Silicon Die of a Micropressure Sensor 378
10.7 Design of Microfluidic Network Systems 382
10.7.1 Fluid Resistance in Microchannels 383
10.7.2 Capillary Electrophoresis Network Systems 386
10.7.3 Mathematical Modeling of Capillary Electrophoresis Network Systems
388
10.7.4 Design Case: Capillary Electrophoresis Network System 389
10.7.5 Capillary Electrophoresis in Curved Channels 392
10.7.6 Issues in Design of CE Processes 394
10.8 Computer-Aided Design 395
10.8.1 Why CAD? 395
10.8.2 What Is in a CAD Package for Microsystems? 395
10.8.3 How to Choose a CAD Package 398
10.8.4 Design Case Using CAD 398
Problems 402
11 ASSEMBLY, PACKAGING, AND TESTING OF MICROSYSTEMS 407
11.1 Introduction 407
11.2 Overview of Microassembly 409
11.3 High Costs of Microassembly 410
11.4 Microassembly Processes 411
11.5 Major Technical Problems in Microassembly 413
11.5.1 Tolerances in Microassembly 414
11.5.2 Tools and Fixtures 417
11.5.3 Contact Problems in Microassembly Tools 417
11.6 Microassembly Work Cells 419
11.7 Challenging Issues in Microassembly 421
11.8 Overview of Microsystems Packaging 422
11.9 General Considerations in Packaging Design 424
11.10 Three Levels of Microsystems Packaging 424
11.10.1 Die-Level Packaging 424
11.10.2 Device-Level Packaging 425
11.10.3 System-Level Packaging 427
11.11 Interfaces in Microsystems Packaging 427
11.12 Essential Packaging Technologies 428
11.13 Die Preparation 429
11.14 Surface Bonding 429
11.14.1 Adhesives 430
11.14.2 Eutectic Bonding 431
11.14.3 Anodic Bonding 432
11.14.4 Silicon Fusion Bonding 434
11.14.5 Overview of Surface Bonding Techniques 434
11.14.6 Silicon-on-Insulator: Special Surface Bonding Techniques 435
11.15 Wire Bonding 437
11.16 Sealing and Encapsulation 439
11.16.1 Integrated Encapsulation Processes 440
11.16.2 Sealing by Wafer Bonding 441
11.16.3 Vacuum Sealing and Encapsulation 442
11.17 Three-Dimensional Packaging 443
11.18 Selection of Packaging Materials 444
11.19 Signal Mapping and Transduction 447
11.19.1 Typical Electrical Signals in Microsystems 447
11.19.2 Measurement of Resistance 447
11.19.3 Signal Mapping and Transduction in Pressure Sensors 448
11.19.4 Capacitance Measurements 450
11.20 Design Case on Pressure Sensor Packaging 451
11.21 Reliability in MEMS Packaging 455
11.22 Testing for Reliability 456
Problems 458
12 INTRODUCTION TO NANOSCALE ENGINEERING 465
12.1 Introduction 465
12.2 Micro- and Nanoscale Technologies 467
12.3 General Principle of Nanofabrication 468
12.4 Nanoproducts 471
12.5 Application of Nanoproducts 474
12.6 Quantum Physics 478
12.7 Molecular Dynamics 479
12.8 Fluid Flow in Submicrometer- and Nanoscales 482
12.8.1 Rarefied Gas 482
12.8.2 Knudsen and Mach Numbers 482
12.8.3 Modeling of Micro- and Nanoscale Gas Flow 483
12.9 Heat Conduction at Nanoscale 486
12.9.1 Heat Transmission at Submicrometer- and Nanoscale 486
12.9.2 Thermal Conductivity of Thin Films 489
12.9.3 Heat Conduction Equation for Thin Films 490
12.10 Measurement of Thermal Conductivity 491
12.11 Challenges in Nanoscale Engineering 497
12.11.1 Nanopatterning in Nanofabrication 498
12.11.2 Nanoassembly 500
12.11.3 New Materials for Nanoelectromechanical Systems (NEMS) 500
12.11.4 Analytical Modeling 501
12.11.5 Testing 502
12.12 Social Impacts of Nanoscale Engineering 502
Problems 503
References 509
Appendix 1 Recommended Units For Thermophysical Quantities 523
Appendix 2 Conversion Of Units 525
Index 527
Preface To The First Edition xix
Suggestions To Instructors xxiii
1 OVERVIEW OF MEMS AND MICROSYSTEMS 1
1.1 MEMS and Microsystems 1
1.2 Typical MEMS and Microsystems Products 7
1.2.1 Microgears 7
1.2.2 Micromotors 7
1.2.3 Microturbines 7
1.2.4 Micro-Optical Components 7
1.3 Evolution of Microfabrication 10
1.4 Microsystems and Microelectronics 11
1.5 Multidisciplinary Nature of Microsystems Design and Manufacture 13
1.6 Microsystems and Miniaturization 15
1.7 Application of Microsystems in Automotive Industry 21
1.7.1 Safety 22
1.7.2 Engine and Power Trains 24
1.7.3 Comfort and Convenience 24
1.7.4 Vehicle Diagnostics and Health Monitoring 24
1.7.5 Future Automotive Applications 26
1.8 Application of Microsystems in Other Industries 27
1.8.1 Application in Health Care Industry 27
1.8.2 Application in Aerospace Industry 28
1.8.3 Application in Industrial Products 29
1.8.4 Application in Consumer Products 29
1.8.5 Application in Telecommunications 30
1.9 Markets for Microsystems 30
Problems 32
2 WORKING PRINCIPLES OF MICROSYSTEMS 35
2.1 Introduction 35
2.2 Microsensors 35
2.2.1 Acoustic Wave Sensors 36
2.2.2 Biomedical and Biosensors 37
2.2.3 Chemical Sensors 40
2.2.4 Optical Sensors 42
2.2.5 Pressure Sensors 44
2.2.6 Thermal Sensors 50
2.3 Microactuation 53
2.3.1 Actuation Using Thermal Forces 53
2.3.2 Actuation Using Shape Memory Alloys 54
2.3.3 Actuation Using Piezoelectric Effect 54
2.3.4 Actuation Using Electrostatic Forces 55
2.4 MEMS with Microactuators 59
2.4.1 Microgrippers 59
2.4.2 Miniature Microphones 61
2.4.3 Micromotors 64
2.5 Microactuators with Mechanical Inertia 66
2.5.1 Microaccelerometers 66
2.5.2 Microgyroscopes 70
2.6 Microfluidics 72
2.6.1 Microvalves 74
2.6.2 Micropumps 75
2.6.3 Micro-Heat Pipes 75
Problems 77
3 ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION 83
3.1 Introduction 83
3.2 Atomic Structure of Matter 83
3.3 Ions and Ionization 86
3.4 Molecular Theory of Matter and Intermolecular Forces 87
3.5 Doping of Semiconductors 89
3.6 Diffusion Process 92
3.7 Plasma Physics 99
3.8 Electrochemistry 100
3.8.1 Electrolysis 101
3.8.2 Electrohydrodynamics 102
Problems 105
4 ENGINEERING MECHANICS FOR MICROSYSTEMS DESIGN 109
4.1 Introduction 109
4.2 Static Bending of Thin Plates 110
4.2.1 Bending of Circular Plates with Edge Fixed 112
4.2.2 Bending of Rectangular Plates with All Edges Fixed 114
4.2.3 Bending of Square Plates with Edges Fixed 116
4.3 Mechanical Vibration 119
4.3.1 General Formulation 119
4.3.2 Resonant Vibration 123
4.3.3 Microaccelerometers 125
4.3.4 Design Theory of Accelerometers 126
4.3.5 Damping Coefficients 134
4.3.6 Resonant Microsensors 144
4.4 Thermomechanics 150
4.4.1 Thermal Effects on Mechanical Strength of Materials 150
4.4.2 Creep Deformation 150
4.4.3 Thermal Stresses 152
4.5 Fracture Mechanics 165
4.5.1 Stress Intensity Factors 166
4.5.2 Fracture Toughness 167
4.5.3 Interfacial Fracture Mechanics 169
4.6 Thin-Film Mechanics 172
4.7 Overview of Finite Element Stress Analysis 173
4.7.1 The Principle 173
4.7.2 Engineering Applications 175
4.7.3 Input Information to FEA 175
4.7.4 Output from FEA 175
4.7.5 Graphical Output 176
4.7.6 General Remarks 176
Problems 178
5 THERMOFLUID ENGINEERING AND MICROSYSTEMS DESIGN 183
5.1 Introduction 183
5.2 Overview of Basics of Fluid Mechanics at Macro- and Mesoscales 184
5.2.1 Viscosity of Fluids 184
5.2.2 Streamlines and Stream Tubes 186
5.2.3 Control Volumes and Control Surfaces 187
5.2.4 Flow Patterns and Reynolds Number 187
5.3 Basic Equations in Continuum Fluid Dynamics 187
5.3.1 Continuity Equation 187
5.3.2 Momentum Equation 190
5.3.3 Equation of Motion 192
5.4 Laminar Fluid Flow in Circular Conduits 195
5.5 Computational Fluid Dynamics 198
5.6 Incompressible Fluid Flow in Microconduits 199
5.6.1 Surface Tension 199
5.6.2 Capillary Effect 201
5.6.3 Micropumping 203
5.7 Overview of Heat Conduction in Solids 204
5.7.1 General Principle of Heat Conduction 204
5.7.2 Fourier Law of Heat Conduction 205
5.7.3 Heat Conduction Equation 207
5.7.4 Newton's Cooling Law 208
5.7.5 Solid-Fluid Interaction 209
5.7.6 Boundary Conditions 210
5.8 Heat Conduction in Multilayered Thin Films 215
5.9 Heat Conduction in Solids at Submicrometer Scale 220
Problems 221
6 SCALING LAWS IN MINIATURIZATION 227
6.1 Introduction to Scaling 227
6.2 Scaling in Geometry 228
6.3 Scaling in Rigid-Body Dynamics 230
6.3.1 Scaling in Dynamic Forces 230
6.3.2 Trimmer Force Scaling Vector 231
6.4 Scaling in Electrostatic Forces 233
6.5 Scaling of Electromagnetic Forces 235
6.6 Scaling in Electricity 237
6.7 Scaling in Fluid Mechanics 238
6.8 Scaling in Heat Transfer 242
6.8.1 Scaling in Heat Conduction 242
6.8.2 Scaling in Heat Convection 243
Problems 244
7 MATERIALS FOR MEMS AND MICROSYSTEMS 245
7.1 Introduction 245
7.2 Substrates and Wafers 245
7.3 Active Substrate Materials 247
7.4 Silicon as Substrate Material 247
7.4.1 Ideal Substrate for MEMS 247
7.4.2 Single-Crystal Silicon and Wafers 248
7.4.3 Crystal Structure 250
7.4.4 Miller Indices 253
7.4.5 Mechanical Properties of Silicon 256
7.5 Silicon Compounds 258
7.5.1 Silicon Dioxide 258
7.5.2 Silicon Carbide 259
7.5.3 Silicon Nitride 259
7.5.4 Polycrystalline Silicon 260
7.6 Silicon Piezoresistors 261
7.7 Gallium Arsenide 266
7.8 Quartz 267
7.9 Piezoelectric Crystals 268
7.10 Polymers 274
7.10.1 Polymers as Industrial Materials 274
7.10.2 Polymers for MEMS and Microsystems 275
7.10.3 Conductive Polymers 275
7.10.4 Langmuir-Blodgett Film 277
7.10.5 SU-8 Photoresists 278
7.11 Packaging Materials 280
Problems 281
8 MICROSYSTEMS FABRICATION PROCESSES 285
8.1 Introduction 285
8.2 Photolithography 285
8.2.1 Overview 286
8.2.2 Photoresists and Application 286
8.2.3 Light Sources 288
8.2.4 Photoresist Development 289
8.2.5 Photoresist Removal and Postbaking 289
8.3 Ion Implantation 289
8.4 Diffusion 292
8.5 Oxidation 295
8.5.1 Thermal Oxidation 295
8.5.2 Silicon Dioxide 296
8.5.3 Thermal Oxidation Rates 296
8.5.4 Oxide Thickness by Color 300
8.6 Chemical Vapor Deposition 301
8.6.1 Working Principle of CVD 301
8.6.2 Chemical Reactions in CVD 302
8.6.3 Rate of Deposition 303
8.6.4 Enhanced CVD 310
8.7 Physical Vapor Deposition: Sputtering 312
8.8 Deposition by Epitaxy 313
8.9 Etching 315
8.9.1 Chemical Etching 316
8.9.2 Plasma Etching 317
8.10 Summary of Microfabrication 317
Problems 318
9 OVERVIEW OF MICROMANUFACTURING 323
9.1 Introduction 323
9.2 Bulk Micromanufacturing 324
9.2.1 Overview of Etching 324
9.2.2 Isotropic and Anisotropic Etching 325
9.2.3 Wet Etchants 326
9.2.4 Etch Stop 328
9.2.5 Dry Etching 329
9.2.6 Comparison of Wet versus Dry Etching 333
9.3 Surface Micromachining 333
9.3.1 Description 333
9.3.2 Process 335
9.3.3 Mechanical Problems Associated with Surface Micromachining 336
9.4 LIGA Process 338
9.4.1 Description 339
9.4.2 Materials for Substrates and Photoresists 340
9.4.3 Electroplating 341
9.4.4 SLIGA Process 342
9.5 Summary of Micromanufacturing 343
9.5.1 Bulk Micromanufacturing 343
9.5.2 Surface Micromachining 343
9.5.3 LIGA Process 343
Problems 344
10 MICROSYSTEMS DESIGN 349
10.1 Introduction 349
10.2 Design Considerations 350
10.2.1 Design Constraints 351
10.2.2 Selection of Materials 352
10.2.3 Selection of Manufacturing Processes 354
10.2.4 Selection of Signal Transduction 355
10.2.5 Electromechanical System 358
10.2.6 Packaging 358
10.3 Process Design 358
10.3.1 Photolithography 359
10.3.2 Thin-Film Fabrications 360
10.3.3 Geometry Shaping 362
10.4 Mechanical Design 362
10.4.1 Geometry of MEMS Components 362
10.4.2 Thermomechanical Loading 362
10.4.3 Thermomechanical Stress Analysis 363
10.4.4 Dynamic Analysis 364
10.4.5 Interfacial Fracture Analysis 369
10.5 Mechanical Design Using Finite Element Method 369
10.5.1 Finite Element Formulation 370
10.5.2 Simulation of Microfabrication Processes 375
10.6 Design of Silicon Die of a Micropressure Sensor 378
10.7 Design of Microfluidic Network Systems 382
10.7.1 Fluid Resistance in Microchannels 383
10.7.2 Capillary Electrophoresis Network Systems 386
10.7.3 Mathematical Modeling of Capillary Electrophoresis Network Systems
388
10.7.4 Design Case: Capillary Electrophoresis Network System 389
10.7.5 Capillary Electrophoresis in Curved Channels 392
10.7.6 Issues in Design of CE Processes 394
10.8 Computer-Aided Design 395
10.8.1 Why CAD? 395
10.8.2 What Is in a CAD Package for Microsystems? 395
10.8.3 How to Choose a CAD Package 398
10.8.4 Design Case Using CAD 398
Problems 402
11 ASSEMBLY, PACKAGING, AND TESTING OF MICROSYSTEMS 407
11.1 Introduction 407
11.2 Overview of Microassembly 409
11.3 High Costs of Microassembly 410
11.4 Microassembly Processes 411
11.5 Major Technical Problems in Microassembly 413
11.5.1 Tolerances in Microassembly 414
11.5.2 Tools and Fixtures 417
11.5.3 Contact Problems in Microassembly Tools 417
11.6 Microassembly Work Cells 419
11.7 Challenging Issues in Microassembly 421
11.8 Overview of Microsystems Packaging 422
11.9 General Considerations in Packaging Design 424
11.10 Three Levels of Microsystems Packaging 424
11.10.1 Die-Level Packaging 424
11.10.2 Device-Level Packaging 425
11.10.3 System-Level Packaging 427
11.11 Interfaces in Microsystems Packaging 427
11.12 Essential Packaging Technologies 428
11.13 Die Preparation 429
11.14 Surface Bonding 429
11.14.1 Adhesives 430
11.14.2 Eutectic Bonding 431
11.14.3 Anodic Bonding 432
11.14.4 Silicon Fusion Bonding 434
11.14.5 Overview of Surface Bonding Techniques 434
11.14.6 Silicon-on-Insulator: Special Surface Bonding Techniques 435
11.15 Wire Bonding 437
11.16 Sealing and Encapsulation 439
11.16.1 Integrated Encapsulation Processes 440
11.16.2 Sealing by Wafer Bonding 441
11.16.3 Vacuum Sealing and Encapsulation 442
11.17 Three-Dimensional Packaging 443
11.18 Selection of Packaging Materials 444
11.19 Signal Mapping and Transduction 447
11.19.1 Typical Electrical Signals in Microsystems 447
11.19.2 Measurement of Resistance 447
11.19.3 Signal Mapping and Transduction in Pressure Sensors 448
11.19.4 Capacitance Measurements 450
11.20 Design Case on Pressure Sensor Packaging 451
11.21 Reliability in MEMS Packaging 455
11.22 Testing for Reliability 456
Problems 458
12 INTRODUCTION TO NANOSCALE ENGINEERING 465
12.1 Introduction 465
12.2 Micro- and Nanoscale Technologies 467
12.3 General Principle of Nanofabrication 468
12.4 Nanoproducts 471
12.5 Application of Nanoproducts 474
12.6 Quantum Physics 478
12.7 Molecular Dynamics 479
12.8 Fluid Flow in Submicrometer- and Nanoscales 482
12.8.1 Rarefied Gas 482
12.8.2 Knudsen and Mach Numbers 482
12.8.3 Modeling of Micro- and Nanoscale Gas Flow 483
12.9 Heat Conduction at Nanoscale 486
12.9.1 Heat Transmission at Submicrometer- and Nanoscale 486
12.9.2 Thermal Conductivity of Thin Films 489
12.9.3 Heat Conduction Equation for Thin Films 490
12.10 Measurement of Thermal Conductivity 491
12.11 Challenges in Nanoscale Engineering 497
12.11.1 Nanopatterning in Nanofabrication 498
12.11.2 Nanoassembly 500
12.11.3 New Materials for Nanoelectromechanical Systems (NEMS) 500
12.11.4 Analytical Modeling 501
12.11.5 Testing 502
12.12 Social Impacts of Nanoscale Engineering 502
Problems 503
References 509
Appendix 1 Recommended Units For Thermophysical Quantities 523
Appendix 2 Conversion Of Units 525
Index 527