Nevanlinna theory (or value distribution theory) in complex analysis is so beautiful that one would naturally be interested in determining how such a theory would look in the non Archimedean analysis and Diophantine approximations. There are two "main theorems" and defect relations that occupy a central place in N evanlinna theory. They generate a lot of applications in studying uniqueness of meromorphic functions, global solutions of differential equations, dynamics, and so on. In this book, we will introduce non-Archimedean analogues of Nevanlinna theory and its applications. In value…mehr
Nevanlinna theory (or value distribution theory) in complex analysis is so beautiful that one would naturally be interested in determining how such a theory would look in the non Archimedean analysis and Diophantine approximations. There are two "main theorems" and defect relations that occupy a central place in N evanlinna theory. They generate a lot of applications in studying uniqueness of meromorphic functions, global solutions of differential equations, dynamics, and so on. In this book, we will introduce non-Archimedean analogues of Nevanlinna theory and its applications. In value distribution theory, the main problem is that given a holomorphic curve f : C -+ M into a projective variety M of dimension n and a family 01 of hypersurfaces on M, under a proper condition of non-degeneracy on f, find the defect relation. If 01 n is a family of hyperplanes on M = r in general position and if the smallest dimension of linear subspaces containing the image f(C) is k, Cartan conjectured that the bound of defect relation is 2n - k + 1. Generally, if 01 is a family of admissible or normal crossings hypersurfaces, there are respectively Shiffman's conjecture and Griffiths-Lang's conjecture. Here we list the process of this problem: A. Complex analysis: (i) Constant targets: R. Nevanlinna[98] for n = k = 1; H. Cartan [20] for n = k 1; E. I. Nochka [99], [100],[101] for n k ~ 1; Shiffman's conjecture partially solved by Hu-Yang [71J; Griffiths-Lang's conjecture (open).
1 Basic facts in p-adic analysis.- 1.1 p-adic numbers.- 1.2 Field extensions.- 1.3 Maximum term of power series.- 1.4 Weierstrass preparation theorem.- 1.5 Newton polygons.- 1.6 Non-Archimedean meromorphic functions.- 2 Nevanlinna theory.- 2.1 Characteristic functions.- 2.2 Growth estimates of meromorphic functions.- 2.3 Two main theorems.- 2.4 Notes on the second main theorem.- 2.5 'abc' conjecture over function fields.- 2.6 Waring's problem over function fields.- 2.7 Exponent of convergence of zeros.- 2.8 Value distribution of differential polynomials.- 3 Uniqueness of meromorphic functions.- 3.1 Adams-Straus' uniqueness theorems.- 3.2 Multiple values of meromorphic functions.- 3.3 Uniqueness polynomials of meromorphic functions.- 3.4 Unique range sets of meromorphic functions.- 3.5 The Frank-Reinders' technique.- 3.6 Some urscm for M(?) and A(?).- 3.7 Some ursim for meromorphic functions.- 3.8 Unique range sets for multiple values.- 4 Differential equations.- 4.1 Malmquist-type theorems.- 4.2 Generalized Malmquist-type theorems.- 4.3 Further results on Malmquist-type theorems.- 4.4 Admissible solutions of some differential equations.- 4.5 Differential equations of constant coefficients.- 5 Dynamics.- 5.1 Attractors and repellers.- 5.2 Riemann-Hurwitz relation.- 5.3 Fixed points of entire functions.- 5.4 Normal families.- 5.5 Montel's theorems.- 5.6 Fatou-Julia theory.- 5.7 Properties of the Julia set.- 5.8 Iteration of z ? zd.- 5.9 Iteration of z ? z2 + c.- 6 Holomorphic curves.- 6.1 Multilinear algebra.- 6.2 The first main theorem of holomorphic curves.- 6.3 The second main theorem of holomorphic curves.- 6.4 Nochka weight.- 6.5 Degenerate holomorphic curves.- 6.6 Uniqueness of holomorphic curves.- 6.7 Second main theorem for hypersurfaces.- 6.8Holomorphic curves into projective varieties.- 7 Diophantine approximations.- 7.1 Schmidt's subspace theorems.- 7.2 Vojta's conjecture.- 7.3 General subspace theorems.- 7.4 Ru-Vojta's subspace theorem for moving targets.- 7.5 Subspace theorem for degenerate mappings.- A The Cartan conjecture for moving targets.- A.1 Non-degenerate holomorphic curves.- A.2 The Steinmetz lemma.- A.3 A defect relation for moving targets.- A.4 The Ru-Stoll techniques.- A.5 Growth of the Steinmetz-Stoll mappings.- A.6 Moving targets in subgeneral position.- A.7 Moving targets in general position.- Symbols.
1 Basic facts in p-adic analysis.- 1.1 p-adic numbers.- 1.2 Field extensions.- 1.3 Maximum term of power series.- 1.4 Weierstrass preparation theorem.- 1.5 Newton polygons.- 1.6 Non-Archimedean meromorphic functions.- 2 Nevanlinna theory.- 2.1 Characteristic functions.- 2.2 Growth estimates of meromorphic functions.- 2.3 Two main theorems.- 2.4 Notes on the second main theorem.- 2.5 'abc' conjecture over function fields.- 2.6 Waring's problem over function fields.- 2.7 Exponent of convergence of zeros.- 2.8 Value distribution of differential polynomials.- 3 Uniqueness of meromorphic functions.- 3.1 Adams-Straus' uniqueness theorems.- 3.2 Multiple values of meromorphic functions.- 3.3 Uniqueness polynomials of meromorphic functions.- 3.4 Unique range sets of meromorphic functions.- 3.5 The Frank-Reinders' technique.- 3.6 Some urscm for M(?) and A(?).- 3.7 Some ursim for meromorphic functions.- 3.8 Unique range sets for multiple values.- 4 Differential equations.- 4.1 Malmquist-type theorems.- 4.2 Generalized Malmquist-type theorems.- 4.3 Further results on Malmquist-type theorems.- 4.4 Admissible solutions of some differential equations.- 4.5 Differential equations of constant coefficients.- 5 Dynamics.- 5.1 Attractors and repellers.- 5.2 Riemann-Hurwitz relation.- 5.3 Fixed points of entire functions.- 5.4 Normal families.- 5.5 Montel's theorems.- 5.6 Fatou-Julia theory.- 5.7 Properties of the Julia set.- 5.8 Iteration of z ? zd.- 5.9 Iteration of z ? z2 + c.- 6 Holomorphic curves.- 6.1 Multilinear algebra.- 6.2 The first main theorem of holomorphic curves.- 6.3 The second main theorem of holomorphic curves.- 6.4 Nochka weight.- 6.5 Degenerate holomorphic curves.- 6.6 Uniqueness of holomorphic curves.- 6.7 Second main theorem for hypersurfaces.- 6.8Holomorphic curves into projective varieties.- 7 Diophantine approximations.- 7.1 Schmidt's subspace theorems.- 7.2 Vojta's conjecture.- 7.3 General subspace theorems.- 7.4 Ru-Vojta's subspace theorem for moving targets.- 7.5 Subspace theorem for degenerate mappings.- A The Cartan conjecture for moving targets.- A.1 Non-degenerate holomorphic curves.- A.2 The Steinmetz lemma.- A.3 A defect relation for moving targets.- A.4 The Ru-Stoll techniques.- A.5 Growth of the Steinmetz-Stoll mappings.- A.6 Moving targets in subgeneral position.- A.7 Moving targets in general position.- Symbols.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497