74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Gebundenes Buch

This book details the design for creation of metal nanomaterials with optimal functionality for specific applications. The authors describe how to make desired metal nanomaterials in a wet lab. They include an overview of applications metal nanomaterials can be implemented in and address the fundamentals in the controlled synthesis of metal nanostructures.

Produktbeschreibung
This book details the design for creation of metal nanomaterials with optimal functionality for specific applications. The authors describe how to make desired metal nanomaterials in a wet lab. They include an overview of applications metal nanomaterials can be implemented in and address the fundamentals in the controlled synthesis of metal nanostructures.
Autorenporträt
Yujie Xiong received his B.S. in chemical physics in 2000 and Ph.D. in inorganic chemistry in 2004 (with Professor Yi Xie), both from the University of Science and Technology of China (USTC).  After four-year training with Professors Younan Xia and John A. Rogers, he joined the National Nanotechnology Infrastructure Network (NSF-NNIN) at Washington University in St. Louis as the Principal Scientist and Lab Manager.  Starting from 2011, he is a Professor of Chemistry at the USTC.  He has published 88 papers with over 8,000 citation (H-index 46).  His research interests include synthesis, fabrication and assembly of inorganic materials for energy and environmental applications. Xianmao Lu is an assistant professor in the Department of Chemical & Biomolecular Engineering at National University of Singapore (NUS). Before he joined NUS, he was a postdoctoral research fellow at University of Washington and Washington University. He received his PhD in Chemical Engineering from the University of Texas at Austin, where he started his research in nanomaterials. His current research interest is mainly on shape-selective growth of noble metal nanocrystals and understanding of their fundamental properties.