Metallurgy and Mechanics of Welding
Processes and Industrial Applications
Herausgeber: Blondeau, Regis
Metallurgy and Mechanics of Welding
Processes and Industrial Applications
Herausgeber: Blondeau, Regis
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book offers a comprehensive overview on the subject of welding. The first part of the book provides a review of the various different welding processes in use, including both traditional and more recent high energy input welding techniques. It then goes on the deal with the entire set of thermal, metallurgical and mechanical phenomena in the heat affected zone (HAX) of bases metals and molten metals. Particular attention is paid to the problems of rupturing, as well as to fatigue and brittle fracturing. The second part of the book concentrates on the applications of welding for various…mehr
Andere Kunden interessierten sich auch für
- Pep (Professional Engineering Publishers)Powder Metallurgy in Design166,99 €
- Pep (Professional Engineering Publishers)Recent Advances in Welding Simulation228,99 €
- John C LippoldWelding Metallurgy and Weldability of Nickel-Base Alloys178,99 €
- Manoj GuptaMicrowaves and Metals191,99 €
- John W. EvansA Guide to Lead-Free Solders120,99 €
- John N DuPontWelding Metallurgy and Weldability of Nickel-Base Alloys with Weldability Stainless Steel and Welding Metallurgy and Weldability Set500,99 €
- Fatigue of Materials and Structures348,99 €
-
-
-
This book offers a comprehensive overview on the subject of welding. The first part of the book provides a review of the various different welding processes in use, including both traditional and more recent high energy input welding techniques. It then goes on the deal with the entire set of thermal, metallurgical and mechanical phenomena in the heat affected zone (HAX) of bases metals and molten metals. Particular attention is paid to the problems of rupturing, as well as to fatigue and brittle fracturing. The second part of the book concentrates on the applications of welding for various materials and in various industrial fields: sheet steel for cars, mechanical system components, steel construction and fabrication, pressure vessels, and the welding of stainless steels and aluminum alloys. Finally, the evolution of standardization in welding is examined. With contributions from authors who are experts in their particular fields, all those involved din both the theoretical study and the practical fields, all those involved in both the theoretical study and the practical application of welding techniques will find this book to be invaluable.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 512
- Erscheinungstermin: 1. Juli 2008
- Englisch
- Abmessung: 240mm x 161mm x 32mm
- Gewicht: 933g
- ISBN-13: 9781848210387
- ISBN-10: 1848210388
- Artikelnr.: 25028322
- Verlag: Wiley
- Seitenzahl: 512
- Erscheinungstermin: 1. Juli 2008
- Englisch
- Abmessung: 240mm x 161mm x 32mm
- Gewicht: 933g
- ISBN-13: 9781848210387
- ISBN-10: 1848210388
- Artikelnr.: 25028322
Regis Blondeau is an Engineer of the National School of Electrochemistry and Electrometallurgy of Grenoble, France.
Preface xiii
Chapter 1. Traditional Welding Processes 1
Guy MURRY and Dominique KAPLAN
1.1. Introduction 1
1.2. Conditions to create metallic bonding 1
1.2.1. Activation of surfaces 2
1.2.2. Elimination of obstacles to bond creation 3
1.2.3. How can we classify the various welding processes? 4
1.3. Industrial welding processes 5
1.3.1. Processes using local fusion of components without mechanical action
5
1.3.2. Processes using local fusion of components with mechanical action 22
1.3.3. Processes using heating without fusion but with mechanical action 27
1.3.4. Processes using mechanical action without heating 29
1.4. Bibliography 30
Chapter 2. High Density Energy Beam Welding Processes: Electron Beam and
Laser Beam 31
Abdelkrim CHEHAÏBOU and Jean-Claude GOUSSAIN
2.1. Welding properties using high density energy beams 31
2.2. Laser beam welding 33
2.2.1. History 33
2.2.2. Principle 34
2.2.3. Various laser types 35
2.2.4. Laser systems 41
2.2.5. Implementation of laser beam welding 48
2.3. Electron beam welding 52
2.3.1. History 52
2.3.2. Principle 53
2.3.3. Equipment 54
2.3.4. Design and preparation of the parts 60
2.4. Metallurgy of high density energy beam welding 61
2.4.1. Steels 61
2.4.2. Aluminum alloys 67
2.4.3. Nickel-based alloys 70
2.4.4. Titanium-based alloys 72
2.4.5. Zirconium-based alloys 73
2.4.6. Copper-based alloys 73
2.5. Mechanical properties of welded joints 75
2.6. The quality of the assemblies 76
2.6.1. Weld defects 76
2.6.2. Weld inspection methods 78
2.6.3. Standardization and qualification of the welding operating mode 79
2.7. Economic aspects 79
2.7.1. Cost of an electron beam machine 79
2.7.2. Cost of a laser beam machine 80
2.8. Safety 82
2.9. Examples of industrial applications 83
2.9.1. Electron beam welding 83
2.9.2. Laser beam welding 84
2.10. Development prospects 84
2.11. Bibliography 86
Chapter 3. Thermal, Metallurgical and Mechanical Phenomena in the Heat
Affected Zone 89
Dominique KAPLAN and Guy MURRY
3.1. Thermal aspects related to welding 89
3.1.1. Maximum temperature attained in the HAZ 95
3.1.2. Cooling parameter in the HAZ 97
3.2. Microstructural modifications in the HAZ: metallurgical consequences
of the thermal cycles of welding 102
3.2.1. Transformations in the HAZ during heating 102
3.2.2. Transformations in the HAZ during cooling 107
3.2.3. Case of multipass welding 110
3.2.4. Cold cracking 112
3.2.5. Lamellar tearing 117
3.3. Influence of the thermal cycles on the mechanical properties of the
HAZ 118
3.3.1. Modifications of the mechanical properties of hardness or traction
in the HAZ 119
3.3.2. Toughness properties of the HAZ 120
3.3.3. Residual stresses associated with welding 123
3.3.4. Influence of residual stress relieving heat treatments in the HAZ
125
3.4. Bibliography 126
Chapter 4. Molten Metal 133
Christian BONNET
4.1. Metallurgical reminders 133
4.2. Molten metal 135
4.2.1. Thermal aspect 135
4.2.2. Chemical aspect 136
4.2.3. Microstructures in ferritic steel welds: relationship with impact
strength characteristics 139
4.3. Principal welding defects 149
4.3.1. Hot cracking 149
4.3.2. Cold cracking 157
4.3.3. Reheat cracking 160
4.3.4. Porosities 162
4.4. Bibliography 166
Chapter 5. Welding Products 169
Christian BONNET
5.1. Coated electrodes 169
5.1.1. Constitution of coatings: consequences 169
5.1.2. Basic electrodes and diffusible hydrogen 172
5.2. Fluxes for submerged arc welding 175
5.2.1. Fused fluxes and granular fluxes: advantages and disadvantages 175
5.2.2. Roles of flux: metallurgical aspects 177
5.3. Welding gases 181
5.3.1. Welding processes under a gas flux with an infusible electrode 181
5.3.2. Welding processes under a gas flux with a fusible electrode 184
5.4. Cored wires 191
5.4.1. Manufacturing processes 191
5.4.2. Types of cored wires 192
5.4.3. The titanium/boron effect in relation to rutile cored wires 194
5.5. Choice of welding products 195
5.6. Welding products and the welder's environment 197
5.6.1. Coated electrodes 197
5.6.2. Gas mixtures for TIG welding 199
5.6.3. Gas mixtures for GMAW 201
5.6.4. Cored wires 204
5.7. Bibliography 205
Chapter 6. Fatigue Strength of Welded Joints 207
Henri-Paul LIEURADE
6.1. Fatigue strength 207
6.1.1. Introduction 207
6.1.2. Fatigue failure of the principal welded joints 208
6.1.3. Concept of nominal stress 212
6.1.4. Factors in welded joint endurance 213
6.2. Dimensioning of joints in mechanized welding 227
6.2.1. Position of the problem 228
6.2.2. General method (current regulations) 230
6.2.3. Verification methods 231
6.2.4. Geometric structural stress method 232
6.3. Bibliography 237
Chapter 7. Fracture Toughness of Welded Joints 239
Marc BOUSSEAU
7.1. Ductile fracture and brittle fracture 239
7.2. Evaluation of fracture risks in metallic materials 241
7.2.1. Determination of the ductile-brittle transition temperature 241
7.2.2. Determination of a fracture criterion in the elastic linear field
245
7.2.3. Fracture criteria in the elasto-plastic field 249
7.3. Evaluation of fracture risks in welded joints 253
7.3.1. Heterogenities of the weld bead 253
7.3.2. Conditions of specimen taking 255
7.3.3. Determination of the ductile-brittle transition temperature 256
7.3.4. Various methods of toughness evaluation 258
7.4. Consequences of heterogenities on the evaluation of fracture risks 262
7.4.1. Mismatching effects 263
7.4.2. Influence of the base material 266
7.4.3. Influence of filler metals 269
7.4.4. Importance of welding conditions 269
7.4.5. Evaluation and taking account of residual stresses 270
7.5. Bibliography 273
Chapter 8. Welding of Steel Sheets, With and Without Surface Treatments 279
Gilles RIGAUT, Olivier DIERAERT, Pascal VERRIER and Joël CLAEYS
8.1. Spot welding 280
8.1.1. Principle 280
8.1.2. Tests of spot weldability 281
8.1.3. Spot weldability of thin steel sheets 284
8.2. Seam welding 292
8.2.1. Mash seam welding 292
8.2.2. Overlapping seam welding 293
8.2.3. Example applications studied or handled with customers 294
8.3. Laser welding of thin sheets 295
8.3.1. Principle of keyhole laser welding 296
8.3.2. Butt welding 298
8.3.3. Lapped welding 304
8.4. Arc welding 306
8.4.1. TIG welding 306
8.4.2. MAG welding 307
8.5. Bibliography 311
Chapter 9. Welding of Steel Mechanical Components 313
Yves DESALOS and Gérard PRADERE
9.1. Introduction 313
9.2. Specificities of welded bonds in mechanical components 315
9.2.1. Standard welding processes and general recommendations 315
9.2.2. Metallurgical defects in the molten zone and the HAZ 317
9.2.3. Weldability limits for welding with and without remelting 320
9.3. Principal types of welding for mechanical components 323
9.3.1. Electric arc welding and alternatives 324
9.3.2. Welds with reduced HAZ using high density energy sources: laser
beam, EB, plasma 327
9.3.3. Friction welding 333
9.3.4. Butt welding by the Joule effect 337
9.3.5. Diffusion welding in the solid phase 341
9.4. Specifications and quality control of the weldings for these
components 344
9.4.1. Weld quality specifications 345
9.4.2. The quality assurance plan of the weld 349
9.5. Developments and trends 353
9.5.1. Evolution of the context 353
9.5.2. Favored processes 353
9.6. Conclusions 355
9.7. Bibliography 356
Chapter 10. Welding Steel Structures 359
Jean-Pierre PESCATORE and Jean-Henri BORGEOT
10.1. Introduction 359
10.1.1. History 359
10.1.2. Applications 361
10.2. Steels for steel structures 362
10.2.1. Grades and qualities 362
10.2.2. Steels used 363
10.3. Steel construction welding processes and techniques 364
10.3.1. Table of the usual processes 364
10.3.2. Preliminary operation: tack weld 365
10.3.3. Particular welding techniques 365
10.3.4. Usual welding positions 367
10.3.5. Edge preparation 367
10.4. Welding distortion 369
10.4.1. Precautions in execution 369
10.4.2. Straightening 371
10.5. Defects and their prevention 371
10.5.1. Cracks 371
10.5.2. Fracture 372
10.5.3. Other thermal and mechanical precautions 373
10.6. Specificities of non-destructive testing of steel structures 374
10.7. Developmental perspectives 374
Chapter 11. Welding Heavy Components in the Nuclear Industry 375
François FAURE and Léon DUNAND-ROUX
11.1. General presentation of a PWR pressure vessel 375
11.2. Main materials used for manufacturing 376
11.2.1. Principle of material choice - construction code 376
11.2.2. Low alloyed steels for pressure vessels 377
11.2.3. Austenitic stainless steel circuits 379
11.2.4. Nickel alloy parts 380
11.3. Welding of large low alloy steel components 381
11.3.1. Properties aimed for 382
11.3.2. Procedural description 382
11.3.3. Welding with coated electrodes 387
11.4. Cladding 387
11.4.1. Cladding method 389
11.4.2. Cladding inspection 389
11.5. Welding of stainless steel circuits 390
11.6. Dissimilar metal interfaces 393
11.7. Welding of steam generator pipes 394
11.8. Conclusions 396
Chapter 12. Welding Stainless Steels 397
Jean-Louis MOIRON
12.1. Definitions 397
12.2. Principal stainless steel families 397
12.3. Metallurgical structures 399
12.4. Constitution diagrams 402
12.4.1. Introduction 402
12.4.2. Calculation of the equivalent formulae 402
12.4.3. Constitution diagrams 403
12.5. Welding ferritic stainless steels 408
12.5.1. Introduction 408
12.5.2. Risks incurred in welding 409
12.5.3. Stabilization 410
12.5.4. Risks of embrittlement 411
12.5.5. Filler products 412
12.5.6. Shielding gases 413
12.5.7. Summary: partial conclusion 413
12.6. Welding of martensitic stainless steels 414
12.6.1. Introduction 414
12.6.2. List of martensitic stainless steels 415
12.6.3. Effect of the elements C, Cr and Ni on the y loop 415
12.6.4. Metallurgical weldability of martensitic stainless steels 416
12.6.5. Conclusion: partial summary 417
12.7. Welding of austenitic stainless steels 418
12.7.1. Introduction 418
12.7.2. Risks incurred during welding 418
12.7.3. Carbide precipitation 419
12.7.4. Hot cracking 420
12.7.5. The sigma phase 421
12.7.6. Filler products 422
12.7.7. Shielding gas 422
12.8. The welding of austeno-ferritic stainless steels (duplex) 423
12.8.1. Introduction 423
12.8.2. Risks incurred in welding 423
12.8.3. Principal austeno-ferritic stainless steels 424
12.8.4. Weldability of austeno-ferritic steels 425
12.8.5. Filler products 426
12.8.6. Shielding gases 426
12.9. Heterogenous welding 427
12.9.1. Reminder of definitions 427
12.9.2. Treatment and forecast of heterogenous welds 427
12.10. Finishing of welds 429
12.11. Glossary 430
12.12. Bibliography 431
Chapter 13.Welding Aluminum Alloys 433
Michel COURBIÈRE
13.1. Metallurgy of welding 433
13.1.1. Weldability of aluminum alloys (steels/aluminum comparison) 433
13.1.2. Filler metals 436
13.2. Welding techniques 440
13.2.1. Introduction 440
13.2.2. Arc welding processes (TIG-MIG) 441
13.2.3. Electric resistance welding 447
13.2.4. Flash welding 448
13.2.5. Friction welding and friction stir welding 449
13.2.6. Electron beam welding 451
13.2.7. Laser welding 452
13.2.8. Other techniques 453
13.3. Preparation and use of semi-finished aluminum welding products 454
13.3.1. Particularities of aluminum alloy surfaces 454
13.3.2. Storage 455
13.3.3. Surface preparation 455
13.3.4. Cleaning of the weld beads 456
13.4. Deformations 457
13.4.1. Introduction 457
13.4.2. Steel/aluminum comparison (deformation due to heating) 458
13.4.3. Shrinkage 461
13.4.4. Basic rules 461
13.5. Dimensioning of the welded structures 464
13.5.1. Static 464
13.5.2. Fatigue dimensioning 467
13.5.3. Rules governing the optimal use of welded structures 467
13.6. Welding defects 468
13.7. Health and safety 471
13.8. Bibliography 471
Chapter 14. Standardization: Organization and Quality Control in Welding
473
Jean-Paul GOURMELON
14.1. Introduction 473
14.2. Standards of general organization of quality 474
14.2.1. Presentation 474
14.2.2. Principles 475
14.2.3. Analysis 475
14.3. Standards for welding procedure qualification 479
14.4. Non-destructive testing standards 484
14.5. Conclusion 487
List of Authors 489
Index 491
Chapter 1. Traditional Welding Processes 1
Guy MURRY and Dominique KAPLAN
1.1. Introduction 1
1.2. Conditions to create metallic bonding 1
1.2.1. Activation of surfaces 2
1.2.2. Elimination of obstacles to bond creation 3
1.2.3. How can we classify the various welding processes? 4
1.3. Industrial welding processes 5
1.3.1. Processes using local fusion of components without mechanical action
5
1.3.2. Processes using local fusion of components with mechanical action 22
1.3.3. Processes using heating without fusion but with mechanical action 27
1.3.4. Processes using mechanical action without heating 29
1.4. Bibliography 30
Chapter 2. High Density Energy Beam Welding Processes: Electron Beam and
Laser Beam 31
Abdelkrim CHEHAÏBOU and Jean-Claude GOUSSAIN
2.1. Welding properties using high density energy beams 31
2.2. Laser beam welding 33
2.2.1. History 33
2.2.2. Principle 34
2.2.3. Various laser types 35
2.2.4. Laser systems 41
2.2.5. Implementation of laser beam welding 48
2.3. Electron beam welding 52
2.3.1. History 52
2.3.2. Principle 53
2.3.3. Equipment 54
2.3.4. Design and preparation of the parts 60
2.4. Metallurgy of high density energy beam welding 61
2.4.1. Steels 61
2.4.2. Aluminum alloys 67
2.4.3. Nickel-based alloys 70
2.4.4. Titanium-based alloys 72
2.4.5. Zirconium-based alloys 73
2.4.6. Copper-based alloys 73
2.5. Mechanical properties of welded joints 75
2.6. The quality of the assemblies 76
2.6.1. Weld defects 76
2.6.2. Weld inspection methods 78
2.6.3. Standardization and qualification of the welding operating mode 79
2.7. Economic aspects 79
2.7.1. Cost of an electron beam machine 79
2.7.2. Cost of a laser beam machine 80
2.8. Safety 82
2.9. Examples of industrial applications 83
2.9.1. Electron beam welding 83
2.9.2. Laser beam welding 84
2.10. Development prospects 84
2.11. Bibliography 86
Chapter 3. Thermal, Metallurgical and Mechanical Phenomena in the Heat
Affected Zone 89
Dominique KAPLAN and Guy MURRY
3.1. Thermal aspects related to welding 89
3.1.1. Maximum temperature attained in the HAZ 95
3.1.2. Cooling parameter in the HAZ 97
3.2. Microstructural modifications in the HAZ: metallurgical consequences
of the thermal cycles of welding 102
3.2.1. Transformations in the HAZ during heating 102
3.2.2. Transformations in the HAZ during cooling 107
3.2.3. Case of multipass welding 110
3.2.4. Cold cracking 112
3.2.5. Lamellar tearing 117
3.3. Influence of the thermal cycles on the mechanical properties of the
HAZ 118
3.3.1. Modifications of the mechanical properties of hardness or traction
in the HAZ 119
3.3.2. Toughness properties of the HAZ 120
3.3.3. Residual stresses associated with welding 123
3.3.4. Influence of residual stress relieving heat treatments in the HAZ
125
3.4. Bibliography 126
Chapter 4. Molten Metal 133
Christian BONNET
4.1. Metallurgical reminders 133
4.2. Molten metal 135
4.2.1. Thermal aspect 135
4.2.2. Chemical aspect 136
4.2.3. Microstructures in ferritic steel welds: relationship with impact
strength characteristics 139
4.3. Principal welding defects 149
4.3.1. Hot cracking 149
4.3.2. Cold cracking 157
4.3.3. Reheat cracking 160
4.3.4. Porosities 162
4.4. Bibliography 166
Chapter 5. Welding Products 169
Christian BONNET
5.1. Coated electrodes 169
5.1.1. Constitution of coatings: consequences 169
5.1.2. Basic electrodes and diffusible hydrogen 172
5.2. Fluxes for submerged arc welding 175
5.2.1. Fused fluxes and granular fluxes: advantages and disadvantages 175
5.2.2. Roles of flux: metallurgical aspects 177
5.3. Welding gases 181
5.3.1. Welding processes under a gas flux with an infusible electrode 181
5.3.2. Welding processes under a gas flux with a fusible electrode 184
5.4. Cored wires 191
5.4.1. Manufacturing processes 191
5.4.2. Types of cored wires 192
5.4.3. The titanium/boron effect in relation to rutile cored wires 194
5.5. Choice of welding products 195
5.6. Welding products and the welder's environment 197
5.6.1. Coated electrodes 197
5.6.2. Gas mixtures for TIG welding 199
5.6.3. Gas mixtures for GMAW 201
5.6.4. Cored wires 204
5.7. Bibliography 205
Chapter 6. Fatigue Strength of Welded Joints 207
Henri-Paul LIEURADE
6.1. Fatigue strength 207
6.1.1. Introduction 207
6.1.2. Fatigue failure of the principal welded joints 208
6.1.3. Concept of nominal stress 212
6.1.4. Factors in welded joint endurance 213
6.2. Dimensioning of joints in mechanized welding 227
6.2.1. Position of the problem 228
6.2.2. General method (current regulations) 230
6.2.3. Verification methods 231
6.2.4. Geometric structural stress method 232
6.3. Bibliography 237
Chapter 7. Fracture Toughness of Welded Joints 239
Marc BOUSSEAU
7.1. Ductile fracture and brittle fracture 239
7.2. Evaluation of fracture risks in metallic materials 241
7.2.1. Determination of the ductile-brittle transition temperature 241
7.2.2. Determination of a fracture criterion in the elastic linear field
245
7.2.3. Fracture criteria in the elasto-plastic field 249
7.3. Evaluation of fracture risks in welded joints 253
7.3.1. Heterogenities of the weld bead 253
7.3.2. Conditions of specimen taking 255
7.3.3. Determination of the ductile-brittle transition temperature 256
7.3.4. Various methods of toughness evaluation 258
7.4. Consequences of heterogenities on the evaluation of fracture risks 262
7.4.1. Mismatching effects 263
7.4.2. Influence of the base material 266
7.4.3. Influence of filler metals 269
7.4.4. Importance of welding conditions 269
7.4.5. Evaluation and taking account of residual stresses 270
7.5. Bibliography 273
Chapter 8. Welding of Steel Sheets, With and Without Surface Treatments 279
Gilles RIGAUT, Olivier DIERAERT, Pascal VERRIER and Joël CLAEYS
8.1. Spot welding 280
8.1.1. Principle 280
8.1.2. Tests of spot weldability 281
8.1.3. Spot weldability of thin steel sheets 284
8.2. Seam welding 292
8.2.1. Mash seam welding 292
8.2.2. Overlapping seam welding 293
8.2.3. Example applications studied or handled with customers 294
8.3. Laser welding of thin sheets 295
8.3.1. Principle of keyhole laser welding 296
8.3.2. Butt welding 298
8.3.3. Lapped welding 304
8.4. Arc welding 306
8.4.1. TIG welding 306
8.4.2. MAG welding 307
8.5. Bibliography 311
Chapter 9. Welding of Steel Mechanical Components 313
Yves DESALOS and Gérard PRADERE
9.1. Introduction 313
9.2. Specificities of welded bonds in mechanical components 315
9.2.1. Standard welding processes and general recommendations 315
9.2.2. Metallurgical defects in the molten zone and the HAZ 317
9.2.3. Weldability limits for welding with and without remelting 320
9.3. Principal types of welding for mechanical components 323
9.3.1. Electric arc welding and alternatives 324
9.3.2. Welds with reduced HAZ using high density energy sources: laser
beam, EB, plasma 327
9.3.3. Friction welding 333
9.3.4. Butt welding by the Joule effect 337
9.3.5. Diffusion welding in the solid phase 341
9.4. Specifications and quality control of the weldings for these
components 344
9.4.1. Weld quality specifications 345
9.4.2. The quality assurance plan of the weld 349
9.5. Developments and trends 353
9.5.1. Evolution of the context 353
9.5.2. Favored processes 353
9.6. Conclusions 355
9.7. Bibliography 356
Chapter 10. Welding Steel Structures 359
Jean-Pierre PESCATORE and Jean-Henri BORGEOT
10.1. Introduction 359
10.1.1. History 359
10.1.2. Applications 361
10.2. Steels for steel structures 362
10.2.1. Grades and qualities 362
10.2.2. Steels used 363
10.3. Steel construction welding processes and techniques 364
10.3.1. Table of the usual processes 364
10.3.2. Preliminary operation: tack weld 365
10.3.3. Particular welding techniques 365
10.3.4. Usual welding positions 367
10.3.5. Edge preparation 367
10.4. Welding distortion 369
10.4.1. Precautions in execution 369
10.4.2. Straightening 371
10.5. Defects and their prevention 371
10.5.1. Cracks 371
10.5.2. Fracture 372
10.5.3. Other thermal and mechanical precautions 373
10.6. Specificities of non-destructive testing of steel structures 374
10.7. Developmental perspectives 374
Chapter 11. Welding Heavy Components in the Nuclear Industry 375
François FAURE and Léon DUNAND-ROUX
11.1. General presentation of a PWR pressure vessel 375
11.2. Main materials used for manufacturing 376
11.2.1. Principle of material choice - construction code 376
11.2.2. Low alloyed steels for pressure vessels 377
11.2.3. Austenitic stainless steel circuits 379
11.2.4. Nickel alloy parts 380
11.3. Welding of large low alloy steel components 381
11.3.1. Properties aimed for 382
11.3.2. Procedural description 382
11.3.3. Welding with coated electrodes 387
11.4. Cladding 387
11.4.1. Cladding method 389
11.4.2. Cladding inspection 389
11.5. Welding of stainless steel circuits 390
11.6. Dissimilar metal interfaces 393
11.7. Welding of steam generator pipes 394
11.8. Conclusions 396
Chapter 12. Welding Stainless Steels 397
Jean-Louis MOIRON
12.1. Definitions 397
12.2. Principal stainless steel families 397
12.3. Metallurgical structures 399
12.4. Constitution diagrams 402
12.4.1. Introduction 402
12.4.2. Calculation of the equivalent formulae 402
12.4.3. Constitution diagrams 403
12.5. Welding ferritic stainless steels 408
12.5.1. Introduction 408
12.5.2. Risks incurred in welding 409
12.5.3. Stabilization 410
12.5.4. Risks of embrittlement 411
12.5.5. Filler products 412
12.5.6. Shielding gases 413
12.5.7. Summary: partial conclusion 413
12.6. Welding of martensitic stainless steels 414
12.6.1. Introduction 414
12.6.2. List of martensitic stainless steels 415
12.6.3. Effect of the elements C, Cr and Ni on the y loop 415
12.6.4. Metallurgical weldability of martensitic stainless steels 416
12.6.5. Conclusion: partial summary 417
12.7. Welding of austenitic stainless steels 418
12.7.1. Introduction 418
12.7.2. Risks incurred during welding 418
12.7.3. Carbide precipitation 419
12.7.4. Hot cracking 420
12.7.5. The sigma phase 421
12.7.6. Filler products 422
12.7.7. Shielding gas 422
12.8. The welding of austeno-ferritic stainless steels (duplex) 423
12.8.1. Introduction 423
12.8.2. Risks incurred in welding 423
12.8.3. Principal austeno-ferritic stainless steels 424
12.8.4. Weldability of austeno-ferritic steels 425
12.8.5. Filler products 426
12.8.6. Shielding gases 426
12.9. Heterogenous welding 427
12.9.1. Reminder of definitions 427
12.9.2. Treatment and forecast of heterogenous welds 427
12.10. Finishing of welds 429
12.11. Glossary 430
12.12. Bibliography 431
Chapter 13.Welding Aluminum Alloys 433
Michel COURBIÈRE
13.1. Metallurgy of welding 433
13.1.1. Weldability of aluminum alloys (steels/aluminum comparison) 433
13.1.2. Filler metals 436
13.2. Welding techniques 440
13.2.1. Introduction 440
13.2.2. Arc welding processes (TIG-MIG) 441
13.2.3. Electric resistance welding 447
13.2.4. Flash welding 448
13.2.5. Friction welding and friction stir welding 449
13.2.6. Electron beam welding 451
13.2.7. Laser welding 452
13.2.8. Other techniques 453
13.3. Preparation and use of semi-finished aluminum welding products 454
13.3.1. Particularities of aluminum alloy surfaces 454
13.3.2. Storage 455
13.3.3. Surface preparation 455
13.3.4. Cleaning of the weld beads 456
13.4. Deformations 457
13.4.1. Introduction 457
13.4.2. Steel/aluminum comparison (deformation due to heating) 458
13.4.3. Shrinkage 461
13.4.4. Basic rules 461
13.5. Dimensioning of the welded structures 464
13.5.1. Static 464
13.5.2. Fatigue dimensioning 467
13.5.3. Rules governing the optimal use of welded structures 467
13.6. Welding defects 468
13.7. Health and safety 471
13.8. Bibliography 471
Chapter 14. Standardization: Organization and Quality Control in Welding
473
Jean-Paul GOURMELON
14.1. Introduction 473
14.2. Standards of general organization of quality 474
14.2.1. Presentation 474
14.2.2. Principles 475
14.2.3. Analysis 475
14.3. Standards for welding procedure qualification 479
14.4. Non-destructive testing standards 484
14.5. Conclusion 487
List of Authors 489
Index 491
Preface xiii
Chapter 1. Traditional Welding Processes 1
Guy MURRY and Dominique KAPLAN
1.1. Introduction 1
1.2. Conditions to create metallic bonding 1
1.2.1. Activation of surfaces 2
1.2.2. Elimination of obstacles to bond creation 3
1.2.3. How can we classify the various welding processes? 4
1.3. Industrial welding processes 5
1.3.1. Processes using local fusion of components without mechanical action
5
1.3.2. Processes using local fusion of components with mechanical action 22
1.3.3. Processes using heating without fusion but with mechanical action 27
1.3.4. Processes using mechanical action without heating 29
1.4. Bibliography 30
Chapter 2. High Density Energy Beam Welding Processes: Electron Beam and
Laser Beam 31
Abdelkrim CHEHAÏBOU and Jean-Claude GOUSSAIN
2.1. Welding properties using high density energy beams 31
2.2. Laser beam welding 33
2.2.1. History 33
2.2.2. Principle 34
2.2.3. Various laser types 35
2.2.4. Laser systems 41
2.2.5. Implementation of laser beam welding 48
2.3. Electron beam welding 52
2.3.1. History 52
2.3.2. Principle 53
2.3.3. Equipment 54
2.3.4. Design and preparation of the parts 60
2.4. Metallurgy of high density energy beam welding 61
2.4.1. Steels 61
2.4.2. Aluminum alloys 67
2.4.3. Nickel-based alloys 70
2.4.4. Titanium-based alloys 72
2.4.5. Zirconium-based alloys 73
2.4.6. Copper-based alloys 73
2.5. Mechanical properties of welded joints 75
2.6. The quality of the assemblies 76
2.6.1. Weld defects 76
2.6.2. Weld inspection methods 78
2.6.3. Standardization and qualification of the welding operating mode 79
2.7. Economic aspects 79
2.7.1. Cost of an electron beam machine 79
2.7.2. Cost of a laser beam machine 80
2.8. Safety 82
2.9. Examples of industrial applications 83
2.9.1. Electron beam welding 83
2.9.2. Laser beam welding 84
2.10. Development prospects 84
2.11. Bibliography 86
Chapter 3. Thermal, Metallurgical and Mechanical Phenomena in the Heat
Affected Zone 89
Dominique KAPLAN and Guy MURRY
3.1. Thermal aspects related to welding 89
3.1.1. Maximum temperature attained in the HAZ 95
3.1.2. Cooling parameter in the HAZ 97
3.2. Microstructural modifications in the HAZ: metallurgical consequences
of the thermal cycles of welding 102
3.2.1. Transformations in the HAZ during heating 102
3.2.2. Transformations in the HAZ during cooling 107
3.2.3. Case of multipass welding 110
3.2.4. Cold cracking 112
3.2.5. Lamellar tearing 117
3.3. Influence of the thermal cycles on the mechanical properties of the
HAZ 118
3.3.1. Modifications of the mechanical properties of hardness or traction
in the HAZ 119
3.3.2. Toughness properties of the HAZ 120
3.3.3. Residual stresses associated with welding 123
3.3.4. Influence of residual stress relieving heat treatments in the HAZ
125
3.4. Bibliography 126
Chapter 4. Molten Metal 133
Christian BONNET
4.1. Metallurgical reminders 133
4.2. Molten metal 135
4.2.1. Thermal aspect 135
4.2.2. Chemical aspect 136
4.2.3. Microstructures in ferritic steel welds: relationship with impact
strength characteristics 139
4.3. Principal welding defects 149
4.3.1. Hot cracking 149
4.3.2. Cold cracking 157
4.3.3. Reheat cracking 160
4.3.4. Porosities 162
4.4. Bibliography 166
Chapter 5. Welding Products 169
Christian BONNET
5.1. Coated electrodes 169
5.1.1. Constitution of coatings: consequences 169
5.1.2. Basic electrodes and diffusible hydrogen 172
5.2. Fluxes for submerged arc welding 175
5.2.1. Fused fluxes and granular fluxes: advantages and disadvantages 175
5.2.2. Roles of flux: metallurgical aspects 177
5.3. Welding gases 181
5.3.1. Welding processes under a gas flux with an infusible electrode 181
5.3.2. Welding processes under a gas flux with a fusible electrode 184
5.4. Cored wires 191
5.4.1. Manufacturing processes 191
5.4.2. Types of cored wires 192
5.4.3. The titanium/boron effect in relation to rutile cored wires 194
5.5. Choice of welding products 195
5.6. Welding products and the welder's environment 197
5.6.1. Coated electrodes 197
5.6.2. Gas mixtures for TIG welding 199
5.6.3. Gas mixtures for GMAW 201
5.6.4. Cored wires 204
5.7. Bibliography 205
Chapter 6. Fatigue Strength of Welded Joints 207
Henri-Paul LIEURADE
6.1. Fatigue strength 207
6.1.1. Introduction 207
6.1.2. Fatigue failure of the principal welded joints 208
6.1.3. Concept of nominal stress 212
6.1.4. Factors in welded joint endurance 213
6.2. Dimensioning of joints in mechanized welding 227
6.2.1. Position of the problem 228
6.2.2. General method (current regulations) 230
6.2.3. Verification methods 231
6.2.4. Geometric structural stress method 232
6.3. Bibliography 237
Chapter 7. Fracture Toughness of Welded Joints 239
Marc BOUSSEAU
7.1. Ductile fracture and brittle fracture 239
7.2. Evaluation of fracture risks in metallic materials 241
7.2.1. Determination of the ductile-brittle transition temperature 241
7.2.2. Determination of a fracture criterion in the elastic linear field
245
7.2.3. Fracture criteria in the elasto-plastic field 249
7.3. Evaluation of fracture risks in welded joints 253
7.3.1. Heterogenities of the weld bead 253
7.3.2. Conditions of specimen taking 255
7.3.3. Determination of the ductile-brittle transition temperature 256
7.3.4. Various methods of toughness evaluation 258
7.4. Consequences of heterogenities on the evaluation of fracture risks 262
7.4.1. Mismatching effects 263
7.4.2. Influence of the base material 266
7.4.3. Influence of filler metals 269
7.4.4. Importance of welding conditions 269
7.4.5. Evaluation and taking account of residual stresses 270
7.5. Bibliography 273
Chapter 8. Welding of Steel Sheets, With and Without Surface Treatments 279
Gilles RIGAUT, Olivier DIERAERT, Pascal VERRIER and Joël CLAEYS
8.1. Spot welding 280
8.1.1. Principle 280
8.1.2. Tests of spot weldability 281
8.1.3. Spot weldability of thin steel sheets 284
8.2. Seam welding 292
8.2.1. Mash seam welding 292
8.2.2. Overlapping seam welding 293
8.2.3. Example applications studied or handled with customers 294
8.3. Laser welding of thin sheets 295
8.3.1. Principle of keyhole laser welding 296
8.3.2. Butt welding 298
8.3.3. Lapped welding 304
8.4. Arc welding 306
8.4.1. TIG welding 306
8.4.2. MAG welding 307
8.5. Bibliography 311
Chapter 9. Welding of Steel Mechanical Components 313
Yves DESALOS and Gérard PRADERE
9.1. Introduction 313
9.2. Specificities of welded bonds in mechanical components 315
9.2.1. Standard welding processes and general recommendations 315
9.2.2. Metallurgical defects in the molten zone and the HAZ 317
9.2.3. Weldability limits for welding with and without remelting 320
9.3. Principal types of welding for mechanical components 323
9.3.1. Electric arc welding and alternatives 324
9.3.2. Welds with reduced HAZ using high density energy sources: laser
beam, EB, plasma 327
9.3.3. Friction welding 333
9.3.4. Butt welding by the Joule effect 337
9.3.5. Diffusion welding in the solid phase 341
9.4. Specifications and quality control of the weldings for these
components 344
9.4.1. Weld quality specifications 345
9.4.2. The quality assurance plan of the weld 349
9.5. Developments and trends 353
9.5.1. Evolution of the context 353
9.5.2. Favored processes 353
9.6. Conclusions 355
9.7. Bibliography 356
Chapter 10. Welding Steel Structures 359
Jean-Pierre PESCATORE and Jean-Henri BORGEOT
10.1. Introduction 359
10.1.1. History 359
10.1.2. Applications 361
10.2. Steels for steel structures 362
10.2.1. Grades and qualities 362
10.2.2. Steels used 363
10.3. Steel construction welding processes and techniques 364
10.3.1. Table of the usual processes 364
10.3.2. Preliminary operation: tack weld 365
10.3.3. Particular welding techniques 365
10.3.4. Usual welding positions 367
10.3.5. Edge preparation 367
10.4. Welding distortion 369
10.4.1. Precautions in execution 369
10.4.2. Straightening 371
10.5. Defects and their prevention 371
10.5.1. Cracks 371
10.5.2. Fracture 372
10.5.3. Other thermal and mechanical precautions 373
10.6. Specificities of non-destructive testing of steel structures 374
10.7. Developmental perspectives 374
Chapter 11. Welding Heavy Components in the Nuclear Industry 375
François FAURE and Léon DUNAND-ROUX
11.1. General presentation of a PWR pressure vessel 375
11.2. Main materials used for manufacturing 376
11.2.1. Principle of material choice - construction code 376
11.2.2. Low alloyed steels for pressure vessels 377
11.2.3. Austenitic stainless steel circuits 379
11.2.4. Nickel alloy parts 380
11.3. Welding of large low alloy steel components 381
11.3.1. Properties aimed for 382
11.3.2. Procedural description 382
11.3.3. Welding with coated electrodes 387
11.4. Cladding 387
11.4.1. Cladding method 389
11.4.2. Cladding inspection 389
11.5. Welding of stainless steel circuits 390
11.6. Dissimilar metal interfaces 393
11.7. Welding of steam generator pipes 394
11.8. Conclusions 396
Chapter 12. Welding Stainless Steels 397
Jean-Louis MOIRON
12.1. Definitions 397
12.2. Principal stainless steel families 397
12.3. Metallurgical structures 399
12.4. Constitution diagrams 402
12.4.1. Introduction 402
12.4.2. Calculation of the equivalent formulae 402
12.4.3. Constitution diagrams 403
12.5. Welding ferritic stainless steels 408
12.5.1. Introduction 408
12.5.2. Risks incurred in welding 409
12.5.3. Stabilization 410
12.5.4. Risks of embrittlement 411
12.5.5. Filler products 412
12.5.6. Shielding gases 413
12.5.7. Summary: partial conclusion 413
12.6. Welding of martensitic stainless steels 414
12.6.1. Introduction 414
12.6.2. List of martensitic stainless steels 415
12.6.3. Effect of the elements C, Cr and Ni on the y loop 415
12.6.4. Metallurgical weldability of martensitic stainless steels 416
12.6.5. Conclusion: partial summary 417
12.7. Welding of austenitic stainless steels 418
12.7.1. Introduction 418
12.7.2. Risks incurred during welding 418
12.7.3. Carbide precipitation 419
12.7.4. Hot cracking 420
12.7.5. The sigma phase 421
12.7.6. Filler products 422
12.7.7. Shielding gas 422
12.8. The welding of austeno-ferritic stainless steels (duplex) 423
12.8.1. Introduction 423
12.8.2. Risks incurred in welding 423
12.8.3. Principal austeno-ferritic stainless steels 424
12.8.4. Weldability of austeno-ferritic steels 425
12.8.5. Filler products 426
12.8.6. Shielding gases 426
12.9. Heterogenous welding 427
12.9.1. Reminder of definitions 427
12.9.2. Treatment and forecast of heterogenous welds 427
12.10. Finishing of welds 429
12.11. Glossary 430
12.12. Bibliography 431
Chapter 13.Welding Aluminum Alloys 433
Michel COURBIÈRE
13.1. Metallurgy of welding 433
13.1.1. Weldability of aluminum alloys (steels/aluminum comparison) 433
13.1.2. Filler metals 436
13.2. Welding techniques 440
13.2.1. Introduction 440
13.2.2. Arc welding processes (TIG-MIG) 441
13.2.3. Electric resistance welding 447
13.2.4. Flash welding 448
13.2.5. Friction welding and friction stir welding 449
13.2.6. Electron beam welding 451
13.2.7. Laser welding 452
13.2.8. Other techniques 453
13.3. Preparation and use of semi-finished aluminum welding products 454
13.3.1. Particularities of aluminum alloy surfaces 454
13.3.2. Storage 455
13.3.3. Surface preparation 455
13.3.4. Cleaning of the weld beads 456
13.4. Deformations 457
13.4.1. Introduction 457
13.4.2. Steel/aluminum comparison (deformation due to heating) 458
13.4.3. Shrinkage 461
13.4.4. Basic rules 461
13.5. Dimensioning of the welded structures 464
13.5.1. Static 464
13.5.2. Fatigue dimensioning 467
13.5.3. Rules governing the optimal use of welded structures 467
13.6. Welding defects 468
13.7. Health and safety 471
13.8. Bibliography 471
Chapter 14. Standardization: Organization and Quality Control in Welding
473
Jean-Paul GOURMELON
14.1. Introduction 473
14.2. Standards of general organization of quality 474
14.2.1. Presentation 474
14.2.2. Principles 475
14.2.3. Analysis 475
14.3. Standards for welding procedure qualification 479
14.4. Non-destructive testing standards 484
14.5. Conclusion 487
List of Authors 489
Index 491
Chapter 1. Traditional Welding Processes 1
Guy MURRY and Dominique KAPLAN
1.1. Introduction 1
1.2. Conditions to create metallic bonding 1
1.2.1. Activation of surfaces 2
1.2.2. Elimination of obstacles to bond creation 3
1.2.3. How can we classify the various welding processes? 4
1.3. Industrial welding processes 5
1.3.1. Processes using local fusion of components without mechanical action
5
1.3.2. Processes using local fusion of components with mechanical action 22
1.3.3. Processes using heating without fusion but with mechanical action 27
1.3.4. Processes using mechanical action without heating 29
1.4. Bibliography 30
Chapter 2. High Density Energy Beam Welding Processes: Electron Beam and
Laser Beam 31
Abdelkrim CHEHAÏBOU and Jean-Claude GOUSSAIN
2.1. Welding properties using high density energy beams 31
2.2. Laser beam welding 33
2.2.1. History 33
2.2.2. Principle 34
2.2.3. Various laser types 35
2.2.4. Laser systems 41
2.2.5. Implementation of laser beam welding 48
2.3. Electron beam welding 52
2.3.1. History 52
2.3.2. Principle 53
2.3.3. Equipment 54
2.3.4. Design and preparation of the parts 60
2.4. Metallurgy of high density energy beam welding 61
2.4.1. Steels 61
2.4.2. Aluminum alloys 67
2.4.3. Nickel-based alloys 70
2.4.4. Titanium-based alloys 72
2.4.5. Zirconium-based alloys 73
2.4.6. Copper-based alloys 73
2.5. Mechanical properties of welded joints 75
2.6. The quality of the assemblies 76
2.6.1. Weld defects 76
2.6.2. Weld inspection methods 78
2.6.3. Standardization and qualification of the welding operating mode 79
2.7. Economic aspects 79
2.7.1. Cost of an electron beam machine 79
2.7.2. Cost of a laser beam machine 80
2.8. Safety 82
2.9. Examples of industrial applications 83
2.9.1. Electron beam welding 83
2.9.2. Laser beam welding 84
2.10. Development prospects 84
2.11. Bibliography 86
Chapter 3. Thermal, Metallurgical and Mechanical Phenomena in the Heat
Affected Zone 89
Dominique KAPLAN and Guy MURRY
3.1. Thermal aspects related to welding 89
3.1.1. Maximum temperature attained in the HAZ 95
3.1.2. Cooling parameter in the HAZ 97
3.2. Microstructural modifications in the HAZ: metallurgical consequences
of the thermal cycles of welding 102
3.2.1. Transformations in the HAZ during heating 102
3.2.2. Transformations in the HAZ during cooling 107
3.2.3. Case of multipass welding 110
3.2.4. Cold cracking 112
3.2.5. Lamellar tearing 117
3.3. Influence of the thermal cycles on the mechanical properties of the
HAZ 118
3.3.1. Modifications of the mechanical properties of hardness or traction
in the HAZ 119
3.3.2. Toughness properties of the HAZ 120
3.3.3. Residual stresses associated with welding 123
3.3.4. Influence of residual stress relieving heat treatments in the HAZ
125
3.4. Bibliography 126
Chapter 4. Molten Metal 133
Christian BONNET
4.1. Metallurgical reminders 133
4.2. Molten metal 135
4.2.1. Thermal aspect 135
4.2.2. Chemical aspect 136
4.2.3. Microstructures in ferritic steel welds: relationship with impact
strength characteristics 139
4.3. Principal welding defects 149
4.3.1. Hot cracking 149
4.3.2. Cold cracking 157
4.3.3. Reheat cracking 160
4.3.4. Porosities 162
4.4. Bibliography 166
Chapter 5. Welding Products 169
Christian BONNET
5.1. Coated electrodes 169
5.1.1. Constitution of coatings: consequences 169
5.1.2. Basic electrodes and diffusible hydrogen 172
5.2. Fluxes for submerged arc welding 175
5.2.1. Fused fluxes and granular fluxes: advantages and disadvantages 175
5.2.2. Roles of flux: metallurgical aspects 177
5.3. Welding gases 181
5.3.1. Welding processes under a gas flux with an infusible electrode 181
5.3.2. Welding processes under a gas flux with a fusible electrode 184
5.4. Cored wires 191
5.4.1. Manufacturing processes 191
5.4.2. Types of cored wires 192
5.4.3. The titanium/boron effect in relation to rutile cored wires 194
5.5. Choice of welding products 195
5.6. Welding products and the welder's environment 197
5.6.1. Coated electrodes 197
5.6.2. Gas mixtures for TIG welding 199
5.6.3. Gas mixtures for GMAW 201
5.6.4. Cored wires 204
5.7. Bibliography 205
Chapter 6. Fatigue Strength of Welded Joints 207
Henri-Paul LIEURADE
6.1. Fatigue strength 207
6.1.1. Introduction 207
6.1.2. Fatigue failure of the principal welded joints 208
6.1.3. Concept of nominal stress 212
6.1.4. Factors in welded joint endurance 213
6.2. Dimensioning of joints in mechanized welding 227
6.2.1. Position of the problem 228
6.2.2. General method (current regulations) 230
6.2.3. Verification methods 231
6.2.4. Geometric structural stress method 232
6.3. Bibliography 237
Chapter 7. Fracture Toughness of Welded Joints 239
Marc BOUSSEAU
7.1. Ductile fracture and brittle fracture 239
7.2. Evaluation of fracture risks in metallic materials 241
7.2.1. Determination of the ductile-brittle transition temperature 241
7.2.2. Determination of a fracture criterion in the elastic linear field
245
7.2.3. Fracture criteria in the elasto-plastic field 249
7.3. Evaluation of fracture risks in welded joints 253
7.3.1. Heterogenities of the weld bead 253
7.3.2. Conditions of specimen taking 255
7.3.3. Determination of the ductile-brittle transition temperature 256
7.3.4. Various methods of toughness evaluation 258
7.4. Consequences of heterogenities on the evaluation of fracture risks 262
7.4.1. Mismatching effects 263
7.4.2. Influence of the base material 266
7.4.3. Influence of filler metals 269
7.4.4. Importance of welding conditions 269
7.4.5. Evaluation and taking account of residual stresses 270
7.5. Bibliography 273
Chapter 8. Welding of Steel Sheets, With and Without Surface Treatments 279
Gilles RIGAUT, Olivier DIERAERT, Pascal VERRIER and Joël CLAEYS
8.1. Spot welding 280
8.1.1. Principle 280
8.1.2. Tests of spot weldability 281
8.1.3. Spot weldability of thin steel sheets 284
8.2. Seam welding 292
8.2.1. Mash seam welding 292
8.2.2. Overlapping seam welding 293
8.2.3. Example applications studied or handled with customers 294
8.3. Laser welding of thin sheets 295
8.3.1. Principle of keyhole laser welding 296
8.3.2. Butt welding 298
8.3.3. Lapped welding 304
8.4. Arc welding 306
8.4.1. TIG welding 306
8.4.2. MAG welding 307
8.5. Bibliography 311
Chapter 9. Welding of Steel Mechanical Components 313
Yves DESALOS and Gérard PRADERE
9.1. Introduction 313
9.2. Specificities of welded bonds in mechanical components 315
9.2.1. Standard welding processes and general recommendations 315
9.2.2. Metallurgical defects in the molten zone and the HAZ 317
9.2.3. Weldability limits for welding with and without remelting 320
9.3. Principal types of welding for mechanical components 323
9.3.1. Electric arc welding and alternatives 324
9.3.2. Welds with reduced HAZ using high density energy sources: laser
beam, EB, plasma 327
9.3.3. Friction welding 333
9.3.4. Butt welding by the Joule effect 337
9.3.5. Diffusion welding in the solid phase 341
9.4. Specifications and quality control of the weldings for these
components 344
9.4.1. Weld quality specifications 345
9.4.2. The quality assurance plan of the weld 349
9.5. Developments and trends 353
9.5.1. Evolution of the context 353
9.5.2. Favored processes 353
9.6. Conclusions 355
9.7. Bibliography 356
Chapter 10. Welding Steel Structures 359
Jean-Pierre PESCATORE and Jean-Henri BORGEOT
10.1. Introduction 359
10.1.1. History 359
10.1.2. Applications 361
10.2. Steels for steel structures 362
10.2.1. Grades and qualities 362
10.2.2. Steels used 363
10.3. Steel construction welding processes and techniques 364
10.3.1. Table of the usual processes 364
10.3.2. Preliminary operation: tack weld 365
10.3.3. Particular welding techniques 365
10.3.4. Usual welding positions 367
10.3.5. Edge preparation 367
10.4. Welding distortion 369
10.4.1. Precautions in execution 369
10.4.2. Straightening 371
10.5. Defects and their prevention 371
10.5.1. Cracks 371
10.5.2. Fracture 372
10.5.3. Other thermal and mechanical precautions 373
10.6. Specificities of non-destructive testing of steel structures 374
10.7. Developmental perspectives 374
Chapter 11. Welding Heavy Components in the Nuclear Industry 375
François FAURE and Léon DUNAND-ROUX
11.1. General presentation of a PWR pressure vessel 375
11.2. Main materials used for manufacturing 376
11.2.1. Principle of material choice - construction code 376
11.2.2. Low alloyed steels for pressure vessels 377
11.2.3. Austenitic stainless steel circuits 379
11.2.4. Nickel alloy parts 380
11.3. Welding of large low alloy steel components 381
11.3.1. Properties aimed for 382
11.3.2. Procedural description 382
11.3.3. Welding with coated electrodes 387
11.4. Cladding 387
11.4.1. Cladding method 389
11.4.2. Cladding inspection 389
11.5. Welding of stainless steel circuits 390
11.6. Dissimilar metal interfaces 393
11.7. Welding of steam generator pipes 394
11.8. Conclusions 396
Chapter 12. Welding Stainless Steels 397
Jean-Louis MOIRON
12.1. Definitions 397
12.2. Principal stainless steel families 397
12.3. Metallurgical structures 399
12.4. Constitution diagrams 402
12.4.1. Introduction 402
12.4.2. Calculation of the equivalent formulae 402
12.4.3. Constitution diagrams 403
12.5. Welding ferritic stainless steels 408
12.5.1. Introduction 408
12.5.2. Risks incurred in welding 409
12.5.3. Stabilization 410
12.5.4. Risks of embrittlement 411
12.5.5. Filler products 412
12.5.6. Shielding gases 413
12.5.7. Summary: partial conclusion 413
12.6. Welding of martensitic stainless steels 414
12.6.1. Introduction 414
12.6.2. List of martensitic stainless steels 415
12.6.3. Effect of the elements C, Cr and Ni on the y loop 415
12.6.4. Metallurgical weldability of martensitic stainless steels 416
12.6.5. Conclusion: partial summary 417
12.7. Welding of austenitic stainless steels 418
12.7.1. Introduction 418
12.7.2. Risks incurred during welding 418
12.7.3. Carbide precipitation 419
12.7.4. Hot cracking 420
12.7.5. The sigma phase 421
12.7.6. Filler products 422
12.7.7. Shielding gas 422
12.8. The welding of austeno-ferritic stainless steels (duplex) 423
12.8.1. Introduction 423
12.8.2. Risks incurred in welding 423
12.8.3. Principal austeno-ferritic stainless steels 424
12.8.4. Weldability of austeno-ferritic steels 425
12.8.5. Filler products 426
12.8.6. Shielding gases 426
12.9. Heterogenous welding 427
12.9.1. Reminder of definitions 427
12.9.2. Treatment and forecast of heterogenous welds 427
12.10. Finishing of welds 429
12.11. Glossary 430
12.12. Bibliography 431
Chapter 13.Welding Aluminum Alloys 433
Michel COURBIÈRE
13.1. Metallurgy of welding 433
13.1.1. Weldability of aluminum alloys (steels/aluminum comparison) 433
13.1.2. Filler metals 436
13.2. Welding techniques 440
13.2.1. Introduction 440
13.2.2. Arc welding processes (TIG-MIG) 441
13.2.3. Electric resistance welding 447
13.2.4. Flash welding 448
13.2.5. Friction welding and friction stir welding 449
13.2.6. Electron beam welding 451
13.2.7. Laser welding 452
13.2.8. Other techniques 453
13.3. Preparation and use of semi-finished aluminum welding products 454
13.3.1. Particularities of aluminum alloy surfaces 454
13.3.2. Storage 455
13.3.3. Surface preparation 455
13.3.4. Cleaning of the weld beads 456
13.4. Deformations 457
13.4.1. Introduction 457
13.4.2. Steel/aluminum comparison (deformation due to heating) 458
13.4.3. Shrinkage 461
13.4.4. Basic rules 461
13.5. Dimensioning of the welded structures 464
13.5.1. Static 464
13.5.2. Fatigue dimensioning 467
13.5.3. Rules governing the optimal use of welded structures 467
13.6. Welding defects 468
13.7. Health and safety 471
13.8. Bibliography 471
Chapter 14. Standardization: Organization and Quality Control in Welding
473
Jean-Paul GOURMELON
14.1. Introduction 473
14.2. Standards of general organization of quality 474
14.2.1. Presentation 474
14.2.2. Principles 475
14.2.3. Analysis 475
14.3. Standards for welding procedure qualification 479
14.4. Non-destructive testing standards 484
14.5. Conclusion 487
List of Authors 489
Index 491