- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Andere Kunden interessierten sich auch für
- Wilhelm MagnusFormeln und Sät¿e für die Spe¿iellen Funktionen der Mathematischen Physik74,99 €
- N. N. JanenkoDie Zwischenschrittmethode zur Lösung mehrdimensionaler Probleme der mathematischen Physik49,99 €
- Michael KarbachMathematische Methoden der Physik69,95 €
- Carl Friedrich GaußWerke49,99 €
- Friedrich Wilhelm SchäfkeEinführung in die Theorie der Speziellen Funktionen der Mathematischen Physik54,99 €
- Adalbert DuschekGrundzüge der Tensorrechnung in Analytischer Darstellung54,99 €
- David HilbertGesammelte Abhandlungen III69,54 €
-
-
-
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Grundlehren der mathematischen Wissenschaften 12
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-662-35615-9
- Softcover reprint of the original 1st ed. 1924
- Seitenzahl: 472
- Erscheinungstermin: 1. Januar 1924
- Deutsch
- Abmessung: 235mm x 155mm x 26mm
- Gewicht: 718g
- ISBN-13: 9783662356159
- ISBN-10: 3662356155
- Artikelnr.: 40770788
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Grundlehren der mathematischen Wissenschaften 12
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-662-35615-9
- Softcover reprint of the original 1st ed. 1924
- Seitenzahl: 472
- Erscheinungstermin: 1. Januar 1924
- Deutsch
- Abmessung: 235mm x 155mm x 26mm
- Gewicht: 718g
- ISBN-13: 9783662356159
- ISBN-10: 3662356155
- Artikelnr.: 40770788
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
David Hilbert (1862-1943) gilt als der vielleicht universellste Mathematiker des ausgehenden 19. und beginnenden 20. Jahrhunderts. Er hat auf zahlreichen Gebieten der Mathematik und der mathematischen Physik grundlegende neue Resultate vorgelegt und wesentliche Entwicklungen angebahnt.
Erstes Kapitel.Die Algebra der linearen Transformationen und quadratischen Formen.- 1. Lineare Gleichungen und lineare Transformationen.- 2. Lineare Transformationen mit linearem Parameter.- 3. Die Hauptachsentransformation der quadratischen und Hermiteschen Formen.- 4. Die Minimum-Maximum-Eigenschaft der Eigenwerte.- 5. Ergänzungen und Aufgaben zum ersten Kapitel.- Zweites Kapitel.Das Problem der Reihenentwicklung willkürlicher Funktionen.- 1. Orthogonale Funktionensysteme.- 2. Das Häufungsprinzip für Funktionen.- 3. Unabhängigkeitsma? und Dimensionenzahl.- 4. Der Weierstra?sche Approximationssatz. Vollständigkeit der Potenzen und der trigonometrischen Funktionen.- 5. Die Fouriersche Reihe.- 6. Das Fouriersche Integral.- 7. Beispiele für das Fouriersche Integral.- 8. Die Polynome von Legendre.- 9. Beispiele anderer Orthogonalsysteme.- 10. Ergänzungen und Aufgaben zum zweiten Kapitel.- Drittes Kapitel.Theorie der linearen Integralgleichungen.- 1. Vorbereitende Betrachtungen.- 2. Die Fredholmschen Sätze für ausgeartete Kerne.- 3. Die Fredholmschen Sätze für einen beliebigen Kern.- 4. Die symmetrischen Kerne und ihre Eigenwerte.- 5. Der Entwicklungssatz und seine Anwendungen.- 6. Die Neumannsche Reihe und der reziproke Kern.- 7. Die Fredholmschen Formeln.- 8. Neubegründung der Theorie.- 9. Erweiterung der Gültigkeitsgrenzen der Theorie.- 10. Ergänzungen und Aufgaben zum dritten Kapitel.- Viertes Kapitel.Die Grundtatsachen der Variationsrechnung.- 1. Die Problemstellung der Variationsrechnung.- 2. Ansätze zur direkten Lösung.- 3. Die Eulerschen Gleichungen der Variationsrechnung.- 4. Bemerkungen und Beispiele zur Integration der Eulerschen Differentialgleichung.- 5.Randbedingungen.- 6. Die zweite Variation und die Legendresche Bedingung.- 7. Variationsprobleme mit Nebenbedingungen.- 8. Der invariante Charakter der Eulerschen Differentialgleichungen.- 9. Transformation von Variationsproblemen in die kanonische und involutorische Gestalt.- 10. Variationsrechnung und Differentialgleichungen der mathematischen Physik.- 11. Ergänzungen und Aufgaben zum vierten Kapitel.- Fünftes Kapitel. Die Schwingungs- und Eigenwertprobleme der Mathematischen Physik.- 1. Vorbemerkungen über lineare Differentialgleichungen.- 2. Systeme von endlich vielen Freiheitsgraden.- 3. Die schwingende Saite.- 4. Der schwingende Stab.- 5. Die schwingende Membran.- 6. Die schwingende Platte.- 7. Allgemeines über die Methode der Eigenfunktionen.- 8. Schwingungen dreidimensionaler Kontinua.- 9. Randwertproblem der Potentialtheorie und Eigenfunktionen.- 10. Probleme vom Sturm-Liouvilleschen Typus. Singulare Randpunkte.- 11. Über das asymptotische Verhalten der Lösungen Sturm-Liouvillescher Differentialgleichungen.- 12. Eigenwertprobleme mit kontinuierlichem Spektrum.- 13. Störungsrechnung.- 14. Die Greensche Funktion (Einflu?funktion) und die Zurückführung von Differentialgleichungsproblemen auf Integralgleichungen.- 15. Beispiele für Greensche Funktionen.- 16. Ergänzungen zum fünften Kapitel.- Sechstes Kapitel. Anwendung der Variationsrechnung auf die Eigenwertprobleme.- 1. Die Extremumseigenschaften der Eigenwerte.- 2. Allgemeine Folgerungen aus den Extremumseigenschaften der Eigenwerte.- 3. Der Vollständigkeitssatz und der Entwicklungssatz.- 4. Die asymptotische Verteilung der Eigenwerte.- 5. Eigenwertprobleme vom Schrödingerschen Typus.- 6. Die Knoten derEigenfunktionen.- 7. Ergänzungen und Aufgaben zum sechsten Kapitel.- Siebentes Kapitel. Spezielle durch Eigenwertprobleme definierte Funktionen.- 1. Vorbemerkungen über lineare Differentialgleichungen zweiter Ordnung.- 2. Die Besselschen Funktionen.- 3. Die Kugelfunktionen von Legendre.- 4. Anwendung der Methode der Integraltransformation auf die Legendreschen, Tschebyscheffschen, Hermiteschen und Laguerreschen Differentialgleichungen.- 5. Die Kugelfunktionen von Laplace.- 6. Asymptotische Entwicklungen.- Entnommen aus dem dem Band II von Courant - Hilbert.- Methoden der mathematischen Physik Seitenangaben der Überschriften, die sich einem unterordne.- beziehen sich auf den erwähnten Band, dessen Seitenzahlen der Leser dort am Fu? der Seite finde.- Siebentes Kapitel. Lösung der Rand- und Eigenwertprobleme auf Grund der Variationsrechnung.- 1. Vorbereitungen.- 2. Die erste Randwertaufgabe.- 3. Das Eigenwertproblem bei verschwindenden Randwerten.- 4. Annahme der Randwerte bei zwei unabhängigen Veränderlichen.- 5. Konstruktion der Grenzfunktionen und Konvergenzeigenschaften der Integrale E,D,H.- 6. Zweite und dritte Randbedingung. Randwertaufgabe.- 7. Das Eigenwertproblem bei zweiter und dritter Randwertbildung.- 8. Diskussion der bei der zweiten und dritten Randbedingung zugrunde gelegten Gebiete.- 9. Ergänzungen und Aufgaben.- 10. Das Problem von Plateau.- Ergänzende Literaturangaben.- Sachverzeichnis zum Anhang.
Erstes Kapitel.Die Algebra der linearen Transformationen und quadratischen Formen.- 1. Lineare Gleichungen und lineare Transformationen.- 2. Lineare Transformationen mit linearem Parameter.- 3. Die Hauptachsentransformation der quadratischen und Hermiteschen Formen.- 4. Die Minimum-Maximum-Eigenschaft der Eigenwerte.- 5. Ergänzungen und Aufgaben zum ersten Kapitel.- Zweites Kapitel.Das Problem der Reihenentwicklung willkürlicher Funktionen.- 1. Orthogonale Funktionensysteme.- 2. Das Häufungsprinzip für Funktionen.- 3. Unabhängigkeitsma? und Dimensionenzahl.- 4. Der Weierstra?sche Approximationssatz. Vollständigkeit der Potenzen und der trigonometrischen Funktionen.- 5. Die Fouriersche Reihe.- 6. Das Fouriersche Integral.- 7. Beispiele für das Fouriersche Integral.- 8. Die Polynome von Legendre.- 9. Beispiele anderer Orthogonalsysteme.- 10. Ergänzungen und Aufgaben zum zweiten Kapitel.- Drittes Kapitel.Theorie der linearen Integralgleichungen.- 1. Vorbereitende Betrachtungen.- 2. Die Fredholmschen Sätze für ausgeartete Kerne.- 3. Die Fredholmschen Sätze für einen beliebigen Kern.- 4. Die symmetrischen Kerne und ihre Eigenwerte.- 5. Der Entwicklungssatz und seine Anwendungen.- 6. Die Neumannsche Reihe und der reziproke Kern.- 7. Die Fredholmschen Formeln.- 8. Neubegründung der Theorie.- 9. Erweiterung der Gültigkeitsgrenzen der Theorie.- 10. Ergänzungen und Aufgaben zum dritten Kapitel.- Viertes Kapitel.Die Grundtatsachen der Variationsrechnung.- 1. Die Problemstellung der Variationsrechnung.- 2. Ansätze zur direkten Lösung.- 3. Die Eulerschen Gleichungen der Variationsrechnung.- 4. Bemerkungen und Beispiele zur Integration der Eulerschen Differentialgleichung.- 5.Randbedingungen.- 6. Die zweite Variation und die Legendresche Bedingung.- 7. Variationsprobleme mit Nebenbedingungen.- 8. Der invariante Charakter der Eulerschen Differentialgleichungen.- 9. Transformation von Variationsproblemen in die kanonische und involutorische Gestalt.- 10. Variationsrechnung und Differentialgleichungen der mathematischen Physik.- 11. Ergänzungen und Aufgaben zum vierten Kapitel.- Fünftes Kapitel. Die Schwingungs- und Eigenwertprobleme der Mathematischen Physik.- 1. Vorbemerkungen über lineare Differentialgleichungen.- 2. Systeme von endlich vielen Freiheitsgraden.- 3. Die schwingende Saite.- 4. Der schwingende Stab.- 5. Die schwingende Membran.- 6. Die schwingende Platte.- 7. Allgemeines über die Methode der Eigenfunktionen.- 8. Schwingungen dreidimensionaler Kontinua.- 9. Randwertproblem der Potentialtheorie und Eigenfunktionen.- 10. Probleme vom Sturm-Liouvilleschen Typus. Singulare Randpunkte.- 11. Über das asymptotische Verhalten der Lösungen Sturm-Liouvillescher Differentialgleichungen.- 12. Eigenwertprobleme mit kontinuierlichem Spektrum.- 13. Störungsrechnung.- 14. Die Greensche Funktion (Einflu?funktion) und die Zurückführung von Differentialgleichungsproblemen auf Integralgleichungen.- 15. Beispiele für Greensche Funktionen.- 16. Ergänzungen zum fünften Kapitel.- Sechstes Kapitel. Anwendung der Variationsrechnung auf die Eigenwertprobleme.- 1. Die Extremumseigenschaften der Eigenwerte.- 2. Allgemeine Folgerungen aus den Extremumseigenschaften der Eigenwerte.- 3. Der Vollständigkeitssatz und der Entwicklungssatz.- 4. Die asymptotische Verteilung der Eigenwerte.- 5. Eigenwertprobleme vom Schrödingerschen Typus.- 6. Die Knoten derEigenfunktionen.- 7. Ergänzungen und Aufgaben zum sechsten Kapitel.- Siebentes Kapitel. Spezielle durch Eigenwertprobleme definierte Funktionen.- 1. Vorbemerkungen über lineare Differentialgleichungen zweiter Ordnung.- 2. Die Besselschen Funktionen.- 3. Die Kugelfunktionen von Legendre.- 4. Anwendung der Methode der Integraltransformation auf die Legendreschen, Tschebyscheffschen, Hermiteschen und Laguerreschen Differentialgleichungen.- 5. Die Kugelfunktionen von Laplace.- 6. Asymptotische Entwicklungen.- Entnommen aus dem dem Band II von Courant - Hilbert.- Methoden der mathematischen Physik Seitenangaben der Überschriften, die sich einem unterordne.- beziehen sich auf den erwähnten Band, dessen Seitenzahlen der Leser dort am Fu? der Seite finde.- Siebentes Kapitel. Lösung der Rand- und Eigenwertprobleme auf Grund der Variationsrechnung.- 1. Vorbereitungen.- 2. Die erste Randwertaufgabe.- 3. Das Eigenwertproblem bei verschwindenden Randwerten.- 4. Annahme der Randwerte bei zwei unabhängigen Veränderlichen.- 5. Konstruktion der Grenzfunktionen und Konvergenzeigenschaften der Integrale E,D,H.- 6. Zweite und dritte Randbedingung. Randwertaufgabe.- 7. Das Eigenwertproblem bei zweiter und dritter Randwertbildung.- 8. Diskussion der bei der zweiten und dritten Randbedingung zugrunde gelegten Gebiete.- 9. Ergänzungen und Aufgaben.- 10. Das Problem von Plateau.- Ergänzende Literaturangaben.- Sachverzeichnis zum Anhang.
From the reviews: "What a compliment for a textbook to get reprinted 70 years after its first publication - and not for historical purposes, but still with the same intention of providing a decent and well readable introduction to some aspects of mathematical physics." (Zentralblatt für Mathematik)