Dieses Buch präsentiert ein breites Spektrum aktueller Methoden zur Repräsentation und Verarbeitung (un)sicheren Wissens in maschinellen Systemen in didaktisch aufbereiteter Form. Neben symbolischen Ansätzen des nichtmonotonen Schließens (Default-Logik, hier konstruktiv und leicht verständlich mittels sog. Default-Bäume realisiert) werden auch ausführlich quantitative Methoden wie z.B. probabilistische Markov- und Bayes-Netze vorgestellt. Weitere Abschnitte beschäftigen sich mit Wissensdynamik (Truth Maintenance-Systeme), Aktionen und Planen, maschinellem Lernen, Data Mining und fallbasiertem Schließen.In einem vertieften Querschnitt werden zentrale alternative Ansätze einer logikbasierten Wissensmodellierung ausführlich behandelt. Detailliert beschriebene Algorithmen geben dem Praktiker nützliche Hinweise zur Anwendung der vorgestellten Ansätze an die Hand, während fundiertes Hintergrundwissen ein tieferes Verständnis für die Besonderheiten der einzelnen Methoden vermittelt. Mit einer weitgehend vollständigen Darstellung des Stoffes und zahlreichen, in den Text integrierten Aufgaben ist das Buch für ein Selbststudium konzipiert, eignet sich aber gleichermaßen für eine entsprechende Vorlesung. Im Online-Service zu diesem Buch werden u.a. ausführliche Lösungshinweise zu allen Aufgaben des Buches angeboten.Zahlreiche Beispiele mit medizinischem, biologischem, wirtschaftlichem und technischem Hintergrund illustrieren konkrete Anwendungsszenarien.