23,99 €
inkl. MwSt.

Versandfertig in über 4 Wochen
payback
12 °P sammeln
  • Broschiertes Buch

It is shown that cells interact with glycosaminoglycans (GAGs) to regulate their own growth, adhesion and motility. Fibroblast seeding on immobilized hyaluronic acid derivatives upon amino and vinyl terminated surfaces reveal such mechanisms. Additionally, in vitro cell dynamics depend on surface chemistry and topography which also influence biocompatibility. The purpose of this work is to develop a microcontact printing approach to immobilize patterns of thiolated hyaluronic acid (t-HA) and thiolated chondroitin sulphate (t-CS) upon vinyl terminated glass by means of a functionalized…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
It is shown that cells interact with glycosaminoglycans (GAGs) to regulate their own growth, adhesion and motility. Fibroblast seeding on immobilized hyaluronic acid derivatives upon amino and vinyl terminated surfaces reveal such mechanisms. Additionally, in vitro cell dynamics depend on surface chemistry and topography which also influence biocompatibility. The purpose of this work is to develop a microcontact printing approach to immobilize patterns of thiolated hyaluronic acid (t-HA) and thiolated chondroitin sulphate (t-CS) upon vinyl terminated glass by means of a functionalized elastomeric stamp (PDMS; polydimethylsiloxane); printing of native hyaluronic (HA) on amino terminated glass is also included.
Autorenporträt
Master of Biomedical Engineering, Major in Biomaterials, Martin Luther University of Halle-Wittenberg ¿ Germany.Engineer Degree in Biomedical Engineering,Technician in Biomedical Engineering,University ECCI, Bogotá ¿ Colombia.